
Spectral Theorem for Normal Operators

Given an operator S : V → V we have defined the transpose St : V ∗ → V ∗.

If V = H is a Hilbert spaces, then we have a natural map Λ : H → H∗ given by
Λ(v)(w) = 〈w, v〉. We note that Λ is C conjugate-linear in the sense that

Λ(z · v) = z · Λ(v)

The Riesz representation theorem is the statement that Λ is onto. (It is easily
seen to be one-to-one.)

Given a complex vector space V , we define V to be the same set with a new
scalar multiplication z � v = z · v.

Exercise: Check that V becomes a complex vector space with the above scalar
multiplication. (Addition is the same as in V .)

Exercise: Check that if V is a normed linear space, then so is V . (Using the
same norm as before.)

It follows that H∗ is a vector space and we can think of Λ as an isomorphism
τ : H → H∗.

Exercise: Given a C-linear operator S : V →W , check that S(z�v) = z�S(v).

It follows that we get a C-linear operator S : V → W given by the same
underlying set map. The “adjoint” of an operator S : H → H is

S∗ = τ−1 ◦ St ◦ τ : H → H

Exercise: Check the identity 〈Sv,w〉 = 〈v, S∗w〉 for all v, w in H.

In many texts, this identity is used to define the operator S∗.

An operator S is called Hermitian if S = S∗. This definition is often extended
to “unbounded” operators (which we are not studying in detail in this course)
and in that case, the term self-adjoint is also used.

Exercise: Check that an operator S is Hermitian if and only if 〈Sv,w〉 = 〈v, Sw〉
for all v, w in H.

Exercise: Given any operator T : H → H define <(T ) = (T + T ∗)/2 and
=(T ) = (T − T ∗)/2

√
−1. Show that <(T ) and =(T ) are Hermitian operators.

Note that T = <(T ) +
√
−1=(T ) and T ∗ = <(T ) +

√
−1=(T ).

Exercise: Given any operator T : H → H, show that T ◦ T ∗ and T ∗ ◦ T are
Hermitian operators.

An operator U is called unitary is U ◦ U∗ = U∗ ◦ U = 1.

Exercise: Check that an operator U is unitary if and only if 〈Uv,Uw〉 = 〈v, w〉
for all v, w in H and U is onto.
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Note that the right shift operator R : `2 → `2 satisfies 〈Rv,Rw〉 = 〈v, w〉 but R
is not onto and so it is not unitary!

An operator is called normal if S ◦ S∗ = S∗ ◦ S; in other words, if S and S∗

commute.

Exercise: If S is Hermitian and U is unitary and S ◦ U = U ◦ S, then check
that ◦U is a normal operator.

Exercise: With notation as in a previous exercise, show that S is a normal
operator if and only if <(S) and =(S) commute.

We first will analyse the eigenvalues and eigenvectors of a single Hermitian
operator and then extend these ideas to commuting collections of Hermitian
operators.

Eigenvalues and Eigenvectors of Hermitian operators

Recall that v ∈ H is called an eigenvector for S : H → H with eigenvalue λ
if S(v) = λv. Usually it is also assumed that v 6= 0. However, we shall only
say that λ is an eigenvalue of S if there is a non-zero vector V which is an
eigenvector of S with eigenvalue λ.

Exercise: For a Hermitian operator S : H → H and v a vector in H, show that
〈Sv, v〉 is a real number.

Exercise: If S is a Hermitian operator and λ is an eigenvalue, then show that
λ is a real number. (Hint: For a non-zero eigenvector v with eigenvalue λ note
that λ〈v, v〉 = 〈Sv, v〉.)

Exercise: If S : H → H is a Hermitian operator and v is an eigenvector, show
that S(v⊥) ⊂ v⊥, where v⊥ is the subspace of H consisting of vectors orthogonal
to v.

Given a non-zero vector v, we define πv : H → H as

πv(w) = 〈w, v〉
〈v, v〉

· v

Exercise: If v is a non-zero eigenvector of a Hermitian operator S, then show
that πv ◦ S = S ◦ πv.

Exercise: If w is a non-zero eigenvector the Hermitian operator S for a different
eigenvalue µ then show that πv(w) = 0; equivalently, show that 〈w, v〉 = 0.

The norm as an eigenvalue

In the finite-dimensional case, one proves (by a compactness argument) that
the maximum of 〈v, Sv〉 for a Hermitian operator S is an eigenvalue. We will
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now give a similar argument can be used to show that the norm of a compact
Hermitian operator is the absolute value of one of its eigenvalues.

As a consequence of the Riesz representation theorem we showed that for a
vector v in a Hilbert space H,

‖v‖ = ‖λ(v)‖ = sup{|〈w, v〉| : ‖w‖ = 1}

Exercise: For an operator S : H → H, show that

‖S‖ = sup{|〈w, Sv〉| : ‖v‖ = 1 = ‖w‖}

Exercise: Show that

sup{|〈w, Sv〉| : ‖v‖ = 1 = ‖w‖} = sup{<(〈w, Sv〉) : ‖v‖ = 1 = ‖w‖}

where <(z) denotes the real part of a complex number z. (Hint: Note that the
following set is closed under multiplication by complex numbers of absolute value
1.)

{〈w, Sv〉 : ‖v‖ = 1 = ‖w‖}

Now, if S : H → H is a Hermitian operator, then

<(〈w, Sv〉) = 1
2 (〈w, Sv〉+ 〈Sv,w〉) = 1

2 (〈w, Sv〉+ 〈v, Sw〉)

On the other hand we have

〈(v ± w), S(v ± w)〉 = (〈v, Sw〉+ 〈w, Sw〉)± (〈w, Sv〉+ 〈v, Sw〉)

This gives us the identity

<(〈w, Sv〉) = 1
4 (〈v + w, S(v + w)〉 − 〈v − w, S(v − w)〉)

Let use put c = sup{|〈v, Sv〉| : ‖v‖ = 1}. We then get

<(〈w, Sv〉) ≤ c

4
(
‖v + w‖2 + ‖v − w‖2)

Exercise: Show that ‖S‖ ≤ c. (Hint: Use the above calculations together with
the parallelogram law as below.)

‖v + w‖2 + ‖v − w‖2 = 2
(
‖v‖2 + ‖w‖2)

Exercise: Show that for a Hermitian operator S : H → H on a Hilbert space

‖S‖ = sup{|〈v, Sv〉| : ‖v‖ = 1}

Exercise: Show that there is a sequence of unit vectors vn in H so that 〈vn, Svn〉
converges to d where d2 = ‖S‖2. (Hint: We have sequence of real numbers whose
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absolute value converges, then a subsequence of these converges either on the
positive side or the negative side!)

We can now calculate

‖Svn − dvn‖2 = ‖Svn‖2 + d2‖vn‖2 − 2d‖Svn, vn‖ ≤ d2 + d2 − 2d‖Svn, vn‖

The last term converges to d2 + d2− 2d2 = 0 as n goes to infinity! So (S− d1)vn
converges to 0 as n goes to infinity.

Now assume that S : H → H is a compact Hermitian operator. Then Svn
contains a convergent subsequence, so we replace (vn) by this subsequence. Let
v be the limit of the sequence (Svn). Then dvn = Svn − (S − d1)(vn) also
converges to v since the second term converges to 0. It follows that Sv which
is the limit of S(dvn) = dSvn which is dv. In other words, we have shown that
Sv = dv so that v is an eigenvector of S with eigenvalue d.

Exercise: If ‖S‖ 6= 0 then show that v is non-zero. (Hint: Note that dvn
converges to v and vn are unit vectors.)

Hence, if S is a compact Hermitian operator on a Hilbert space, then either
S = 0 or, there is an eigenvalue d of S such that d2 = ‖S‖2.

Structure of a Compact Hermitian Operator

In this section we will show that there is a basis of unit eigenvectors for a compact
Hermitian operator S : H → H.

Suppose that λ is a non-zero eigenvalue of S. Since S−λ1 is a Fredholm operator,
the subspace Vλ = ker(S − λ1) is finite dimensional. From the results above, we
see that S maps V ⊥λ to itself. It is clear that the restriction of S to this closed
subspace is also compact and Hermitian. Moreover, λ cannot be an eigenvalue
for this restriction since all all eigenvectors of S with eigenvalue λ are in Vλ.

We have show that there are only finitely many eigenvalues outside {z : |z| < 1/n}
Hence, the non-zero eigenvalues of S form a countable (or possibly even finite!)
sequence (λn) of real numbers. The subspace Vk = Vλn

of eigenvectors for
eigenvalue λn is finite.

Let V0 be the subspace of H that is the intersection of all the spaces V ⊥k . This
is a closed subspace and the restriction of S to V0 has no non-zero eigenvalues.

Exercise: Show that the restriction of S to H0 is 0. (Hint: We saw above that
a non-zero compact Hermitian operator has a non-zero eigenvalue.)

Now let (en,k)rn

k=1 be an orthonormal basis of Vn for n ≥ 1 and let e0,α)α∈A be
an orthonormal Hilbert basis of V0. (Here we have allowed for A to be an infinite
and perhaps even uncountable set!). Together, this collection gives a Hilbert
basis of H which consists of eigenvectors of S as required.
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Simultaneous Diagonalisation

We now want to extend the above result to compact normal operators.

As seen above a normal operator S can be written as <(S) +
√
−1=(S) where

<(S) and =(S) commute with each other and are Hermitian. Moreover, is S is
compact then St is compact and hence, so is S∗. Hence <(S) = (S + S∗)/2 and
=(S) = (S − S∗)/2

√
−1 are also compact. Hence, we want to consider the study

S = P +
√
−1Q where P and Q are compact Hermitian operators that commute

with each other.

Suppose P and Q are commuting operators. Then, for an eigenvector v of P we
have

PQv = QPv = Qλv = λQv

where λ is the eigenvalue of P associated with the eigenvector v. Thus, if we
denote by Vλ the space of all vectors v (including 0!) for which Pv = λv, then
Q takes this subspace to itself.

First we use the fact that P is compact Hermitian. Let Vn be the eigenspaces of
P constructed in the previous subsection. As seen above, these are orthogonal
and the direct sum of all of these is dense in H. (Recall that the direct sum only
contains finite linear combinations.) Since each Vn is stable under Q as proved
above, we can further apply the result to decompose each by using the fact that
Q is compact Hermitian. Combining the orthonormal Hilbert bases for each Vn,
we obtain

Exercise: Show that there is a collection (eα)α∈A of unit vectors that form a
Hilbert basis of H so that each eα is an eigenvector for both P and Q. It follows
that this is a Hilbert basis consisting of unit eigenvectors for S as well.

This shows that given a compact normal operator S : H → H, there is a Hilbert
basis (eα)α∈A of H that consists of unit eigenvectors for S.
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