Spectral Theorem for Normal Operators

Given an operator $S: V \rightarrow V$ we have defined the transpose $S^{t}: V^{*} \rightarrow V^{*}$.
If $V=H$ is a Hilbert spaces, then we have a natural map $\Lambda: H \rightarrow H^{*}$ given by $\Lambda(v)(w)=\langle w, v\rangle$. We note that Λ is \mathbb{C} conjugate-linear in the sense that

$$
\Lambda(z \cdot v)=\bar{z} \cdot \Lambda(v)
$$

The Riesz representation theorem is the statement that Λ is onto. (It is easily seen to be one-to-one.)

Given a complex vector space V, we define \bar{V} to be the same set with a new scalar multiplication $z \odot v=\bar{z} \cdot v$.

Exercise: Check that \bar{V} becomes a complex vector space with the above scalar multiplication. (Addition is the same as in V.)
Exercise: Check that if V is a normed linear space, then so is \bar{V}. (Using the same norm as before.)
It follows that $\overline{H^{*}}$ is a vector space and we can think of Λ as an isomorphism $\tau: H \rightarrow \overline{H^{*}}$.

Exercise: Given a \mathbb{C}-linear operator $S: V \rightarrow W$, check that $S(z \odot v)=z \odot S(v)$.
It follows that we get a \mathbb{C}-linear operator $\bar{S}: \bar{V} \rightarrow \bar{W}$ given by the same underlying set map. The "adjoint" of an operator $S: H \rightarrow H$ is

$$
S^{*}=\tau^{-1} \circ S^{t} \circ \tau: H \rightarrow H
$$

Exercise: Check the identity $\langle S v, w\rangle=\left\langle v, S^{*} w\right\rangle$ for all v, w in H.
In many texts, this identity is used to define the operator S^{*}.
An operator S is called Hermitian if $S=S^{*}$. This definition is often extended to "unbounded" operators (which we are not studying in detail in this course) and in that case, the term self-adjoint is also used.
Exercise: Check that an operator S is Hermitian if and only if $\langle S v, w\rangle=\langle v, S w\rangle$ for all v, w in H.

Exercise: Given any operator $T: H \rightarrow H$ define $\Re(T)=\left(T+T^{*}\right) / 2$ and $\Im(T)=\left(T-T^{*}\right) / 2 \sqrt{-1}$. Show that $\Re(T)$ and $\Im(T)$ are Hermitian operators.
Note that $T=\Re(T)+\sqrt{-1} \Im(T)$ and $T^{*}=\Re(T)+\sqrt{-1} \Im(T)$.
Exercise: Given any operator $T: H \rightarrow H$, show that $T \circ T^{*}$ and $T^{*} \circ T$ are Hermitian operators.
An operator U is called unitary is $U \circ U^{*}=U^{*} \circ U=\mathbf{1}$.
Exercise: Check that an operator U is unitary if and only if $\langle U v, U w\rangle=\langle v, w\rangle$ for all v, w in H and U is onto.

Note that the right shift operator $R: \ell_{2} \rightarrow \ell_{2}$ satisfies $\langle R v, R w\rangle=\langle v, w\rangle$ but R is not onto and so it is not unitary!

An operator is called normal if $S \circ S^{*}=S^{*} \circ S$; in other words, if S and S^{*} commute.

Exercise: If S is Hermitian and U is unitary and $S \circ U=U \circ S$, then check that $\circ U$ is a normal operator.

Exercise: With notation as in a previous exercise, show that S is a normal operator if and only if $\Re(S)$ and $\Im(S)$ commute.
We first will analyse the eigenvalues and eigenvectors of a single Hermitian operator and then extend these ideas to commuting collections of Hermitian operators.

Eigenvalues and Eigenvectors of Hermitian operators

Recall that $v \in H$ is called an eigenvector for $S: H \rightarrow H$ with eigenvalue λ if $S(v)=\lambda v$. Usually it is also assumed that $v \neq 0$. However, we shall only say that λ is an eigenvalue of S if there is a non-zero vector V which is an eigenvector of S with eigenvalue λ.

Exercise: For a Hermitian operator $S: H \rightarrow H$ and v a vector in H, show that $\langle S v, v\rangle$ is a real number.

Exercise: If S is a Hermitian operator and λ is an eigenvalue, then show that λ is a real number. (Hint: For a non-zero eigenvector v with eigenvalue λ note that $\lambda\langle v, v\rangle=\langle S v, v\rangle$.)

Exercise: If $S: H \rightarrow H$ is a Hermitian operator and v is an eigenvector, show that $S\left(v^{\perp}\right) \subset v^{\perp}$, where v^{\perp} is the subspace of H consisting of vectors orthogonal to v.
Given a non-zero vector v, we define $\pi_{v}: H \rightarrow H$ as

$$
\pi_{v}(w)=\frac{\langle w, v\rangle}{\langle v, v\rangle} \cdot v
$$

Exercise: If v is a non-zero eigenvector of a Hermitian operator S, then show that $\pi_{v} \circ S=S \circ \pi_{v}$.

Exercise: If w is a non-zero eigenvector the Hermitian operator S for a different eigenvalue μ then show that $\pi_{v}(w)=0$; equivalently, show that $\langle w, v\rangle=0$.

The norm as an eigenvalue

In the finite-dimensional case, one proves (by a compactness argument) that the maximum of $\langle v, S v\rangle$ for a Hermitian operator S is an eigenvalue. We will
now give a similar argument can be used to show that the norm of a compact Hermitian operator is the absolute value of one of its eigenvalues.

As a consequence of the Riesz representation theorem we showed that for a vector v in a Hilbert space H,

$$
\|v\|=\|\lambda(v)\|=\sup \{|\langle w, v\rangle|:\|w\|=1\}
$$

Exercise: For an operator $S: H \rightarrow H$, show that

$$
\|S\|=\sup \{|\langle w, S v\rangle|:\|v\|=1=\|w\|\}
$$

Exercise: Show that

$$
\sup \{|\langle w, S v\rangle|:\|v\|=1=\|w\|\}=\sup \{\Re(\langle w, S v\rangle):\|v\|=1=\|w\|\}
$$

where $\Re(z)$ denotes the real part of a complex number z. (Hint: Note that the following set is closed under multiplication by complex numbers of absolute value 1.)

$$
\{\langle w, S v\rangle:\|v\|=1=\|w\|\}
$$

Now, if $S: H \rightarrow H$ is a Hermitian operator, then

$$
\Re(\langle w, S v\rangle)=\frac{1}{2}(\langle w, S v\rangle+\langle S v, w\rangle)=\frac{1}{2}(\langle w, S v\rangle+\langle v, S w\rangle)
$$

On the other hand we have

$$
\langle(v \pm w), S(v \pm w)\rangle=(\langle v, S w\rangle+\langle w, S w\rangle) \pm(\langle w, S v\rangle+\langle v, S w\rangle)
$$

This gives us the identity

$$
\Re(\langle w, S v\rangle)=\frac{1}{4}(\langle v+w, S(v+w)\rangle-\langle v-w, S(v-w)\rangle)
$$

Let use put $c=\sup \{|\langle v, S v\rangle|:\|v\|=1\}$. We then get

$$
\Re(\langle w, S v\rangle) \leq \frac{c}{4}\left(\|v+w\|^{2}+\|v-w\|^{2}\right)
$$

Exercise: Show that $\|S\| \leq c$. (Hint: Use the above calculations together with the parallelogram law as below.)

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\left(\|v\|^{2}+\|w\|^{2}\right)
$$

Exercise: Show that for a Hermitian operator $S: H \rightarrow H$ on a Hilbert space

$$
\|S\|=\sup \{|\langle v, S v\rangle|:\|v\|=1\}
$$

Exercise: Show that there is a sequence of unit vectors v_{n} in H so that $\left\langle v_{n}, S v_{n}\right\rangle$ converges to d where $d^{2}=\|S\|^{2}$. (Hint: We have sequence of real numbers whose
absolute value converges, then a subsequence of these converges either on the positive side or the negative side!)

We can now calculate

$$
\left\|S v_{n}-d v_{n}\right\|^{2}=\left\|S v_{n}\right\|^{2}+d^{2}\left\|v_{n}\right\|^{2}-2 d\left\|S v_{n}, v_{n}\right\| \leq d^{2}+d^{2}-2 d\left\|S v_{n}, v_{n}\right\|
$$

The last term converges to $d^{2}+d^{2}-2 d^{2}=0$ as n goes to infinity! So $(S-d \mathbf{1}) v_{n}$ converges to 0 as n goes to infinity.

Now assume that $S: H \rightarrow H$ is a compact Hermitian operator. Then $S v_{n}$ contains a convergent subsequence, so we replace $\left(v_{n}\right)$ by this subsequence. Let v be the limit of the sequence $\left(S v_{n}\right)$. Then $d v_{n}=S v_{n}-(S-d \mathbf{1})\left(v_{n}\right)$ also converges to v since the second term converges to 0 . It follows that $S v$ which is the limit of $S\left(d v_{n}\right)=d S v_{n}$ which is $d v$. In other words, we have shown that $S v=d v$ so that v is an eigenvector of S with eigenvalue d.

Exercise: If $\|S\| \neq 0$ then show that v is non-zero. (Hint: Note that $d v_{n}$ converges to v and v_{n} are unit vectors.)

Hence, if S is a compact Hermitian operator on a Hilbert space, then either $S=0$ or, there is an eigenvalue d of S such that $d^{2}=\|S\|^{2}$.

Structure of a Compact Hermitian Operator

In this section we will show that there is a basis of unit eigenvectors for a compact Hermitian operator $S: H \rightarrow H$.

Suppose that λ is a non-zero eigenvalue of S. Since $S-\lambda \mathbf{1}$ is a Fredholm operator, the subspace $V_{\lambda}=\operatorname{ker}(S-\lambda \mathbf{1})$ is finite dimensional. From the results above, we see that S maps V_{λ}^{\perp} to itself. It is clear that the restriction of S to this closed subspace is also compact and Hermitian. Moreover, λ cannot be an eigenvalue for this restriction since all all eigenvectors of S with eigenvalue λ are in V_{λ}.

We have show that there are only finitely many eigenvalues outside $\{z:|z|<1 / n\}$ Hence, the non-zero eigenvalues of S form a countable (or possibly even finite!) sequence $\left(\lambda_{n}\right)$ of real numbers. The subspace $V_{k}=V_{\lambda_{n}}$ of eigenvectors for eigenvalue λ_{n} is finite.

Let V_{0} be the subspace of H that is the intersection of all the spaces V_{k}^{\perp}. This is a closed subspace and the restriction of S to V_{0} has no non-zero eigenvalues.

Exercise: Show that the restriction of S to H_{0} is 0 . (Hint: We saw above that a non-zero compact Hermitian operator has a non-zero eigenvalue.)

Now let $\left(e_{n, k}\right)_{k=1}^{r_{n}}$ be an orthonormal basis of V_{n} for $n \geq 1$ and let $\left.e_{0, \alpha}\right)_{\alpha \in A}$ be an orthonormal Hilbert basis of V_{0}. (Here we have allowed for A to be an infinite and perhaps even uncountable set!). Together, this collection gives a Hilbert basis of H which consists of eigenvectors of S as required.

Simultaneous Diagonalisation

We now want to extend the above result to compact normal operators.
As seen above a normal operator S can be written as $\Re(S)+\sqrt{-1} \Im(S)$ where $\Re(S)$ and $\Im(S)$ commute with each other and are Hermitian. Moreover, is S is compact then S^{t} is compact and hence, so is S^{*}. Hence $\Re(S)=\left(S+S^{*}\right) / 2$ and $\Im(S)=\left(S-S^{*}\right) / 2 \sqrt{-1}$ are also compact. Hence, we want to consider the study $S=P+\sqrt{-1} Q$ where P and Q are compact Hermitian operators that commute with each other.

Suppose P and Q are commuting operators. Then, for an eigenvector v of P we have

$$
P Q v=Q P v=Q \lambda v=\lambda Q v
$$

where λ is the eigenvalue of P associated with the eigenvector v. Thus, if we denote by V_{λ} the space of all vectors v (including 0 !) for which $P v=\lambda v$, then Q takes this subspace to itself.

First we use the fact that P is compact Hermitian. Let V_{n} be the eigenspaces of P constructed in the previous subsection. As seen above, these are orthogonal and the direct sum of all of these is dense in H. (Recall that the direct sum only contains finite linear combinations.) Since each V_{n} is stable under Q as proved above, we can further apply the result to decompose each by using the fact that Q is compact Hermitian. Combining the orthonormal Hilbert bases for each V_{n}, we obtain

Exercise: Show that there is a collection $\left(e_{\alpha}\right)_{\alpha \in A}$ of unit vectors that form a Hilbert basis of H so that each e_{α} is an eigenvector for both P and Q. It follows that this is a Hilbert basis consisting of unit eigenvectors for S as well.

This shows that given a compact normal operator $S: H \rightarrow H$, there is a Hilbert basis $\left(e_{\alpha}\right)_{\alpha \in A}$ of H that consists of unit eigenvectors for S.

