Monad of Groups

In this section we will demonstrate a monad F the "creates" the theory of groups as F-algbras.
Recall that a monad (F, u, m) on Set is:

- A functor F from Set to itself.
- A natural transformation $u: 1_{\text {Set }} \rightarrow F$.
- A natural transformation $m: F F \rightarrow F$.
- The following diagram commutes:

- The following diagram commutes:

Recall that an M-algebra is a set H with a map $\mu: M(H) \rightarrow H$ which satisfies:

- $\mu \circ u_{H}: H \rightarrow H$ is the identity map.
- $\mu \circ F\left(m_{H}\right)=\mu \circ F(\mu)$ as set maps $F F(H) \rightarrow H$.

The free group functor F

To a set S we associate the set $F(S)$ whose elements are (conceptually) products of variables $\left(g_{a}\right)_{a \in S}$ and their inverses. In other words, an element w of $F(S)$ has the form

$$
w=g_{a_{1}}^{n_{1}} \cdots g_{a_{r}}^{n_{r}}
$$

where a_{i} are elements of S and $n_{i} \in \mathbb{Z}$ are integers. To avoid redundancy, we require that a_{i} is different from a_{i+1} and do not allow $n_{i}=0$. Finally, we allow $r=0$; this corresponds to the empty product which we denote as e. We call such elements w of $F(S)$ "words" in the "group generators" S.

Given a more general word with possible redundancy (i.e. where we allow $a_{i}=a_{i+1}$), we can shrink the the word by combining $g_{a}^{n} g_{a}^{m}$ to g_{a}^{m+n}. When $m+n=0$ we drop this term entirely. Each such step reduces the length of the expression and we denote this operation by $\rho(w)$ and call the result the reduced word.

Given a set map $f: S \rightarrow T$, we get a set map $F(f): F(S) \rightarrow F(T)$ by defining

$$
F(f)(w)=F(f)\left(g_{a_{1}}^{n_{1}} \cdots g_{a_{r}}^{n_{r}}\right)=\rho\left(g_{f\left(a_{1}\right)}^{n_{1}} \cdots g_{f\left(a_{r}\right)}^{n_{r}}\right)
$$

Note that the reduction ρ is used since $f\left(a_{i}\right)$ could be equal to $f\left(a_{i+1}\right)$.
One easily checks that F defines a functor from Set to itself.

The natural transformations u and m

We define $u_{S}: S \rightarrow F(S)$ by $a \mapsto g_{a}$. It is clear that this gives a natural transformation $1_{\text {Set }} \rightarrow F$.

An element of $F F(S)$ can be written in the form $g_{w_{1}}^{n_{1}} \cdots g_{w_{r}}^{n_{r}}$ where n_{i} are non-zero integers and $w_{i} \in F(S)$ are words such that $w_{i} \neq w_{i+1}$.

Under the map $m_{S}: F F(S) \rightarrow M(S)$

$$
m_{S}: g_{w_{1}}^{n_{1}} \cdots g_{w_{r}}^{n_{r}} \mapsto \rho\left(w_{1}^{n_{1}} \cdots w_{r}^{n_{r}}\right)
$$

Note that when w_{i} is the empty word, it is dropped (actually, it does not appear!) from the expression above as part of the reduction. This remark is necessary since g_{e} is could occur as $g_{w_{i}}$ for some i.

One can check the commutative diagrams which show that (F, u, m) is a monad (but it will not be done in these notes and left as an exercise for the reader).

F-algebras

Given a morphism $\mu: F(H) \rightarrow H$ together with the commudative diagrams which make this an F-alebgra, we wish to show that H becomes a group in a natural way so that the map μ is given by

$$
\mu: g_{a_{1}}^{n_{1}} \cdots g_{a_{r}}^{n_{r}} \mapsto a_{1}^{n_{1}} \odot \cdots \odot a_{r}^{n_{r}}
$$

where:

- for a in H and n an integer, a^{n} is the n-th power of the group element $a \in H$, and
- for a and b in $H, a \odot b$ represents the product of these elements in H.

To prove this, we first define the various components of the proposed group structure on H as follows.

- The element $\mu(e)$ is denoted by 1 and will be shown to be the identity element of H.
- The element $\mu\left(g_{a}^{2}\right)$ is denoted by $a \odot a$ and will be shown to be the product of a with itself in H.
- When a, b are different, the element $\mu\left(g_{a} g_{b}\right)$ is denoted by $a \odot b$ and will be shown to be the product in H.
- The element $\mu\left(g_{a}^{-1}\right)$ is denoted by $\iota(a)$ and will be shown to be the inverse of the element a in H.

The identity $\mu\left(g_{a}\right)=a$
The first condition for F-algebras says that $\mu\left(u_{H}(a)\right)=a$. Since $u_{H}(a)=g_{a}$, we see that we obtain $\mu\left(g_{a}\right)=a$ as required.
In particular, we note that $\mu\left(g_{1}\right)=1=\mu(e)$ and $\mu\left(g_{\iota(a)}\right)=\iota(a)=\mu\left(g_{a}^{-1}\right)$. Similarly, we see that $\mu\left(g_{a \odot b}\right)=a \odot b=\mu\left(g_{a} g_{b}\right)$. Thus, the map μ can take different elements in $F(H)$ to the same element in H.

A formula

Before going further, let us compute $F(\mu): F F(H) \rightarrow F(H)$.

$$
F(\mu): g_{w_{1}}^{n_{1}} \cdots g_{w_{r}}^{n_{r}} \mapsto \rho\left(g_{\mu\left(w_{1}\right)}^{n_{1}} \cdots g_{\mu\left(w_{r}\right)}^{n_{r}}\right)
$$

Now using the identity $\mu \circ F(\mu)=\mu \circ m_{H}$ and the computation of m_{H} above we see that

$$
\mu\left(\rho\left(w_{1}^{n_{1}} \cdots w_{r}^{n_{r}}\right)\right)=\mu\left(\rho\left(g_{\mu\left(w_{1}\right)}^{n_{1}} \cdots g_{\mu\left(w_{r}\right)}^{n_{r}}\right)\right)
$$

for all choices of w_{i} and n_{i} as above.

The element 1 is identity for \odot

We apply the above identity with $w_{1}=g_{a}$ and $w_{2}=e$ to get

$$
\mu\left(\rho\left(g_{a} e\right)\right)=\mu\left(\rho\left(g_{\mu\left(g_{a}\right)} g_{\mu(e)}\right)\right)
$$

Now the left-hand side simplifies to $\mu\left(g_{a}\right)=a$, while the right-hand side simplifies to $\mu\left(g_{a} g_{1}\right)=a \odot 1$. This shows that $a=a \odot 1$.
Similarly, if we take $w_{1}=e$ and $w_{2}=g_{a}$, we get $a=1 \odot a$.
The element $\iota(a)$ is the inverse of a
We apply the above identity with $w_{1}=g_{a}$ and $w_{2}=g_{a}^{-1}$ to get

$$
\mu\left(\rho\left(g_{a} g_{a}^{-1}\right)\right)=\mu\left(\rho\left(g_{\mu\left(g_{a}\right)} g_{\mu\left(g_{a}^{-1}\right)}\right)\right)
$$

Now the left-hand side simplifies to $\mu(e)=1$, while the right-hand side simplifies to $\mu\left(g_{a} g_{\iota(a)}\right)=a \odot \iota(a)$. This shows that $1=a \odot \iota(a)$.
Similarly, if we take $w_{1}=g_{a}^{-1}$ and $w_{2}=g_{a}$, we get $1=\iota(a) \odot a$.

Associativity

We apply the above identity with $w_{1}=g_{a}$ and $w_{2}=g_{b} g_{c}$ to get

$$
\mu\left(\rho\left(g_{a} g_{b} g_{c}\right)\right)=\mu\left(\rho\left(g_{\mu\left(g_{a}\right)} g_{\mu\left(g_{b} g_{c}\right)}\right)\right)
$$

Now the left-hand side simplifies to $\mu\left(g_{a} g_{b} g_{c}\right)$, while the right-hand side simplifies to $\mu\left(g_{a} g_{b \odot c}\right)=a \odot(b \odot c)$. This shows that $a \odot(b \odot c)=\mu\left(g_{a} g_{b} g_{c}\right)$

Similarly, if we take $w_{1}=g_{a} g_{b}$ and $w_{2}=g_{c}$, we get $(a \odot b) \odot c=\mu\left(g_{a} g_{b} g_{c}\right)$. Combining these identities gives $(a \odot b) \odot c=a \odot(b \odot c)$ as required.

It follows that H is a group with the above operations. The computation of μ in terms of the group operation also follows rather easily after that.

