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Production of X-ray radiation 

        Requires highly energetic particles


        In the cosmic setting, X-rays are produced by three main

        processes:


        1. From very hot gas (Temperature > 1 million K),

            thermal bremsstrahlung emission, atomic transitions


        2. From relativistic electrons streaming through

            magnetic fields, synchrotron emission


        3. Compton Scattering of low-energy radiation field

            by energetic electrons



Classical radiation theory
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An accelerated electric charge emits e.m. radiation
Uniformly moving charge: 
          Coulomb Field : ~ 1/r2 from the current location of the charge 

Accelerated charge:

The Velocity and Radktion Fieus 81 

the field point from the retarded point is ncf, where i= t -  tret is the light 
travel time. In the same time the particle undergoes a displacement Ipci. 
The displacement between the field point and the current position is thus 
(n -Ip)ci, which is seen to be the direction of the velocity field in Eq. (3.9a). 

The second term, the acceleration field, falls off as 1/ R, is proportional 
to the particle’s acceleration and is perpendicular to n. This electric field, 
along with the corresponding magnetic field, constitutes the radiation field: 

(3. IOa) 

= [ x Erad]. (3.1 Ob) 

Note that E, B and n form a right-hand triad of mutually perpendicular 
vectors, and that IEradl = lBradI. These properties are consistent with the 
radiation solutions of the source-free Maxwell equations. 

Figure 3.2 demonstrates geometrically how an acceleration can give rise 
to a transverse field that decreases as 1 / R, rather than the 1 / R decrease 
of a nonaccelerated charge. The particle originally moved with constant 
velocity along the x-Exis and stopped at x=O at time t = O .  At t= 1 the 
field outside of a radius c is radial and points to the position where the 
particle would have been had there been no deceleration, since no infor- 
mation of the latter has yet propagated to this distance. On the other hand, 
the field inside radius c is “informed” and is radially directed to the true 
position of the particle. There is only one way these two’ fields can be 

4 n  
Erad(r, t ,  = - [ - x { (n-8) x b } ] .  

K ~ R  

x = o  x = l  

Figure 3.2 Gmphical akmonstmtion of the l / R  accelemtion field Charged 
parti& mouing at uni~orm oelociry in psirive x direction is stopped at x = 0 and 
t -0 .  from Rybicki & Lightman 1979 

ctacc

Field line density at 
the ring: ~ 1/(2πr . ctacc) 

Propagating transverse 
electric field (radiation):
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157 6.2 The radiation of accelerated charged particles

fact, be small aberration effects associated with the velocity !v, but these are second-order
compared with the gross effects we are discussing. We may therefore consider a small cone
of field lines at an angle θ with respect to the acceleration vector of the charge at t = 0
and a similar one at the later time t when the charge is moving at a constant velocity !v

(Fig. 6.1b). We now join up electric field lines between the two cones through the thin shell
of thickness c!t as shown in the diagram. The strength of the Eθ -component of the field
is given by the number of field lines per unit area in the i θ -direction. From the geometry
of Fig. 6.1(b), which exaggerates the discontinuities in the field lines, the Eθ component is
given by the relative sizes of the sides of the rectangle ABC D, that is,

Eθ

Er
= !v t sin θ

c!t
. (6.3)

But, Er is given by Coulomb’s law,

Er = q
4πε0r2

, where r = ct .

Therefore

Eθ = q(!v/!t) sin θ

4πε0c2r
.

!v/!t is the acceleration |a| of the charge and hence

Eθ = q|a| sin θ

4πε0c2r
. (6.4)

Notice that the radial component of the field decreases as r−2, according to Coulomb’s law,
but the tangential component decreases only as r−1, because in the shell, as t increases,
the field lines become more and more stretched in the Eθ -direction, as can be appreciated
from (6.3). Alternatively, we can write qa= p̈ , where p is the electric dipole moment of
the charge with respect to some origin, and hence

Eθ = | p̈ | sin θ

4πε0c2r
. (6.5)

This electric field component represents a pulse of electromagnetic radiation, and hence
the rate of energy flow per unit area per second at distance r is given by the magnitude of
the Poynting vector S = |E × H| = E2/Z0, where Z0 = (µ0/ε0)1/2 is the impedance of
free space. The rate of energy flow through the area r2 d% subtended by solid angle d% at
angle θ and at distance r from the charge is therefore

Sr2 d% = −
(

dE
dt

)
d% = | p̈ |2 sin2 θ

16π2 Z0ε
2
0c4r2

r2 d% = | p̈ |2 sin2 θ

16π2ε0c3
d% . (6.6)

To find the total radiation rate −dE/dt , we integrate over the solid angle. Because of
the symmetry of the emitted intensity with respect to the acceleration vector, we can
integrate over the solid angle defined by the circular strip between the angles θ and θ + dθ ,
d% = 2π sin θ dθ :

−
(

dE
dt

)
=

∫ π

0

| p̈ |2 sin2 θ

16π2ε0c3
2π sin θ dθ . (6.7)

Associated transverse 
magnetic field:

Emitted Power

|H | = E✓/(µ0/"0)
1/2
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158 Radiation of accelerated charged particles

We find the key result

−
(

dE
dt

)
= | p̈ |2

6πε0c3
= q2|a|2

6πε0c3
. (6.8)

This result is sometimes referred to as Larmor’s formula – precisely the same result comes
out of the full theory. These formulae embody the three essential properties of the radiation
of an accelerated charged particle.

(i) The total radiation rate is given by Larmor’s formula (6.8). Notice that, in this formula,
the acceleration is the proper acceleration of the charged particle in the relativistic
sense and that the radiation loss rate is that measured in the instantaneous rest frame
of the particle.

(ii) The polar diagram of the radiation is of dipolar form, that is, the electric field strength
varies as sin θ and the power radiated per unit solid angle varies as sin2θ where θ is
the angle with respect to the acceleration vector of the particle (Fig. 6.1c). Notice that
there is no radiation along the acceleration vector and the field strength is greatest at
right angles to it.

(iii) The radiation is polarised, the electric field vector, as measured by a distant observer,
lying in the direction of the acceleration vector of the particle as projected onto the
sphere at distance r from the charged particle, that is, in the direction of the polar
angle unit vector i θ (see Fig. 6.1b).

These are very useful rules which enable us to understand the radiation properties of
particles in many different astrophysical situations. It is important to remember that these
rules are applicable in the instantaneous rest frame of the particle and we have to look
carefully at what an external observer sees if the particle is moving at a relativistic velocity.

6.2.3 The radiation of an accelerated charged particle – from Maxwell’s equations

The standard analysis begins with Maxwell’s equations in free space:

∇ × E = −∂ B
∂t

, (6.9a)

∇ × B = µ0 J + 1
c2

∂ E
∂t

, (6.9b)

∇ · B = 0 , (6.9c)

∇ · E = ρe/ε0 . (6.9d)

We introduce the scalar and vector potentials, φ and A respectively, in order to simplify the
evaluation of the vector fields E and B at distance r from the accelerated charge through
the definitions

B = ∇ × A , (6.10a)

E = −∂ A
∂t

− ∇φ . (6.10b)

= �
✓
dE

dt

◆
=

Z
|E ⇥H |r2d⌦

(Larmor Formula)

a = proper acceleration 
in the instantaneous 
rest frame of the  
charged particle

J.J. Thomson



Moving Observer:
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155 6.2 The radiation of accelerated charged particles

This result can also be appreciated from the following argument. In the moving instan-
taneous rest frame of an accelerated charged particle, the total energy loss dE ′ has dipole
symmetry and so is emitted with zero net momentum (see Sect. 6.2.2 below). Therefore,
its four-momentum can be written [dE ′/c, 0]. This radiation is emitted in the interval of
time dt ′, which is the zeroth component of the displacement four-vector [c dt ′, 0]. Using
the inverse Lorentz transforms to relate dE ′ and c dt ′ to dE and c dt , we find

dE = γ dE ′; dt = γ dt ′ , (6.1)

and hence

dE/dt = dE ′/dt ′ . (6.2)

6.2.2 The radiation of an accelerated charged particle – J. J. Thomson’s treatment

The expressions for the properties of the electromagnetic radiation of accelerated charged
particles are central to the understanding of radiation processes in high energy astrophysics
and so two versions are presented. The normal derivation proceeds from Maxwell’s equa-
tions and involves writing down the retarded potentials for the electric and magnetic fields at
some distant point r from the accelerated charge (see Sect. 6.2.3). It is, however, instructive
to begin with a remarkable argument due to J. J. Thomson which indicates very clearly the
origins of the radiation of an accelerated charged particle and the polarisation properties of
the radiation. This argument was given by Thomson in his derivation of the formula for the
Thomson scattering cross-section σT in the context of the scattering of X-rays by electrons
(Thomson, 1906).

Consider a charge q stationary at the origin O of some inertial frame of reference S
at time t = 0. Suppose the charge suffers a small acceleration to velocity #v in the short
interval of time #t . Thomson visualised the resulting field distribution in terms of the
electric field lines attached to the accelerated charge. After time t , we can distinguish
between the field configuration inside and outside a sphere of radius r = ct centred on the
origin of S, recalling that electromagnetic disturbances are propagated at the speed of light
in free space (Fig. 6.1a). Outside the sphere, the field lines do not yet know that the charge
has moved away from the origin because information cannot travel faster than the speed
of light and therefore they are radial, centred on O . Inside this sphere, the field lines are
radial about the origin of the frame of reference which is centred on the moving charge.
Between these two regions, there is a thin shell of thickness c#t in which we have to join up
corresponding electric field lines (see Fig. 6.1a). Geometrically, it is clear that there must
be a component of the electric field in the circumferential direction in this shell, that is, in
the i θ -direction. This ‘pulse’ of electromagnetic field is propagated away from the charge at
the speed of light and consequently represents an energy loss from the accelerated charged
particle.

Let us work out the strength of the electric field in the pulse. We assume that the increment
in velocity #v is very small, that is, #v ≪ c, and therefore it is safe to assume that the field
lines are radial not only at t = 0 but also at time t in the frame of reference S. There will, in

(Lorentz invariant)
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162 Radiation of accelerated charged particles

Therefore,

a2 + γ 2(v · a/c)2 = |a ∥|2 + |a ⊥ |2 + γ 2(va ∥/c)2 ,

= |a ⊥ |2 + |a ∥|2(1 + γ 2v2/c) ,

= |a ⊥ |2 + |a ∥|2γ 2 . (6.24)

Therefore, the loss rate can also be written,
(

dE
dt

)

S
= q 2γ 4

6πε0c3
(|a ⊥ |2 + γ 2|a ∥|2) . (6.25)

These results will prove useful in the subsequent development.

6.2.5 Parseval’s theorem and the spectral distribution of the radiation
of an accelerated electron

The final tool we need before tackling bremsstrahlung is the decomposition of the radiation
field of the electron into its spectral components. Parseval’s theorem provides an elegant
procedure for relating the kinematic history of the particle to its radiation spectrum.

We introduce the Fourier transform of the acceleration of the particle through the Fourier
transform pair:

v̇(t) = 1
(2π )1/2

∫ ∞

−∞
v̇(ω) exp(−iωt) dω , (6.26)

v̇(ω) = 1
(2π )1/2

∫ ∞

−∞
v̇(t) exp(iωt) dt . (6.27)

According to Parseval’s theorem, v̇(ω) and v̇(t) are related by the following integral:
∫ ∞

−∞
|v̇(ω)|2dω =

∫ ∞

−∞
|v̇(t)|2 dt . (6.28)

This is proved in all textbooks on Fourier analysis. We can therefore apply this relation to
the energy radiated by a particle which has an acceleration history v̇(t):

∫ ∞

−∞

dE
dt

dt =
∫ ∞

−∞

e2

6πε0c3
|v̇(t)|2 dt =

∫ ∞

−∞

e2

6πε0c3
|v̇(ω)|2 dω . (6.29)

Now, what we really want is
∫ ∞

0 · · · dω rather than
∫ ∞
−∞ · · · dω. Since the acceleration is

a real function, there is another theorem in Fourier analysis which tells us that
∫ ∞

0
|v̇(ω)|2 dω =

∫ 0

−∞
|v̇(ω)|2 dω ,

and hence we find

total emitted radiation =
∫ ∞

0
I (ω) dω =

∫ ∞

0

e2

3πε0c3
|v̇(ω)|2 dω .

Therefore

I (ω) = e2

3πε0c3
|v̇(ω)|2 . (6.30)

proper acceleration

-a2
0 = �

4(|a?|2 + �2|ak|2)

� = Lorentz factor

=
1

1 � v2

c2
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Radiation Pattern

Stationary
dipole

Moving
dipole

Motion introduces aberration and relativistic beaming



Polarization

⇥E ⇤ n̂ ⇥ [(n̂ � ⇥�) ⇥ ⇥̇�]

At a single particle level, over short times, radiation is always 
polarized.

For slowly moving particle (or     nearly || to    )  polarization
is || to the projected instantaneous acceleration.

Net observed polarization involves average over the 
particle’s trajectory, and over the distribution of emitting 
particles.

⇥� n̂



Spectrum:
Fourier Transform of the time-varying electric field
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Therefore,

a2 + γ 2(v · a/c)2 = |a ∥|2 + |a ⊥ |2 + γ 2(va ∥/c)2 ,

= |a ⊥ |2 + |a ∥|2(1 + γ 2v2/c) ,

= |a ⊥ |2 + |a ∥|2γ 2 . (6.24)

Therefore, the loss rate can also be written,
(

dE
dt

)

S
= q 2γ 4

6πε0c3
(|a ⊥ |2 + γ 2|a ∥|2) . (6.25)

These results will prove useful in the subsequent development.

6.2.5 Parseval’s theorem and the spectral distribution of the radiation
of an accelerated electron

The final tool we need before tackling bremsstrahlung is the decomposition of the radiation
field of the electron into its spectral components. Parseval’s theorem provides an elegant
procedure for relating the kinematic history of the particle to its radiation spectrum.

We introduce the Fourier transform of the acceleration of the particle through the Fourier
transform pair:

v̇(t) = 1
(2π )1/2

∫ ∞

−∞
v̇(ω) exp(−iωt) dω , (6.26)

v̇(ω) = 1
(2π )1/2

∫ ∞

−∞
v̇(t) exp(iωt) dt . (6.27)

According to Parseval’s theorem, v̇(ω) and v̇(t) are related by the following integral:
∫ ∞

−∞
|v̇(ω)|2dω =

∫ ∞

−∞
|v̇(t)|2 dt . (6.28)

This is proved in all textbooks on Fourier analysis. We can therefore apply this relation to
the energy radiated by a particle which has an acceleration history v̇(t):

∫ ∞

−∞

dE
dt

dt =
∫ ∞

−∞

e2

6πε0c3
|v̇(t)|2 dt =

∫ ∞

−∞

e2

6πε0c3
|v̇(ω)|2 dω . (6.29)

Now, what we really want is
∫ ∞

0 · · · dω rather than
∫ ∞
−∞ · · · dω. Since the acceleration is

a real function, there is another theorem in Fourier analysis which tells us that
∫ ∞

0
|v̇(ω)|2 dω =

∫ 0

−∞
|v̇(ω)|2 dω ,

and hence we find

total emitted radiation =
∫ ∞

0
I (ω) dω =

∫ ∞

0

e2

3πε0c3
|v̇(ω)|2 dω .

Therefore

I (ω) = e2

3πε0c3
|v̇(ω)|2 . (6.30)
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Therefore,

a2 + γ 2(v · a/c)2 = |a ∥|2 + |a ⊥ |2 + γ 2(va ∥/c)2 ,

= |a ⊥ |2 + |a ∥|2(1 + γ 2v2/c) ,

= |a ⊥ |2 + |a ∥|2γ 2 . (6.24)

Therefore, the loss rate can also be written,
(

dE
dt

)

S
= q 2γ 4

6πε0c3
(|a ⊥ |2 + γ 2|a ∥|2) . (6.25)

These results will prove useful in the subsequent development.

6.2.5 Parseval’s theorem and the spectral distribution of the radiation
of an accelerated electron

The final tool we need before tackling bremsstrahlung is the decomposition of the radiation
field of the electron into its spectral components. Parseval’s theorem provides an elegant
procedure for relating the kinematic history of the particle to its radiation spectrum.

We introduce the Fourier transform of the acceleration of the particle through the Fourier
transform pair:

v̇(t) = 1
(2π )1/2

∫ ∞

−∞
v̇(ω) exp(−iωt) dω , (6.26)

v̇(ω) = 1
(2π )1/2

∫ ∞

−∞
v̇(t) exp(iωt) dt . (6.27)

According to Parseval’s theorem, v̇(ω) and v̇(t) are related by the following integral:
∫ ∞

−∞
|v̇(ω)|2dω =

∫ ∞

−∞
|v̇(t)|2 dt . (6.28)

This is proved in all textbooks on Fourier analysis. We can therefore apply this relation to
the energy radiated by a particle which has an acceleration history v̇(t):

∫ ∞

−∞

dE
dt

dt =
∫ ∞

−∞

e2

6πε0c3
|v̇(t)|2 dt =

∫ ∞

−∞

e2

6πε0c3
|v̇(ω)|2 dω . (6.29)

Now, what we really want is
∫ ∞

0 · · · dω rather than
∫ ∞
−∞ · · · dω. Since the acceleration is

a real function, there is another theorem in Fourier analysis which tells us that
∫ ∞

0
|v̇(ω)|2 dω =

∫ 0

−∞
|v̇(ω)|2 dω ,

and hence we find

total emitted radiation =
∫ ∞

0
I (ω) dω =

∫ ∞

0

e2

3πε0c3
|v̇(ω)|2 dω .

Therefore

I (ω) = e2

3πε0c3
|v̇(ω)|2 . (6.30)

= 2
Z 1

0
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Therefore,

a2 + γ 2(v · a/c)2 = |a ∥|2 + |a ⊥ |2 + γ 2(va ∥/c)2 ,

= |a ⊥ |2 + |a ∥|2(1 + γ 2v2/c) ,

= |a ⊥ |2 + |a ∥|2γ 2 . (6.24)

Therefore, the loss rate can also be written,
(

dE
dt

)

S
= q 2γ 4

6πε0c3
(|a ⊥ |2 + γ 2|a ∥|2) . (6.25)

These results will prove useful in the subsequent development.

6.2.5 Parseval’s theorem and the spectral distribution of the radiation
of an accelerated electron

The final tool we need before tackling bremsstrahlung is the decomposition of the radiation
field of the electron into its spectral components. Parseval’s theorem provides an elegant
procedure for relating the kinematic history of the particle to its radiation spectrum.

We introduce the Fourier transform of the acceleration of the particle through the Fourier
transform pair:

v̇(t) = 1
(2π )1/2

∫ ∞

−∞
v̇(ω) exp(−iωt) dω , (6.26)

v̇(ω) = 1
(2π )1/2

∫ ∞

−∞
v̇(t) exp(iωt) dt . (6.27)

According to Parseval’s theorem, v̇(ω) and v̇(t) are related by the following integral:
∫ ∞

−∞
|v̇(ω)|2dω =

∫ ∞

−∞
|v̇(t)|2 dt . (6.28)

This is proved in all textbooks on Fourier analysis. We can therefore apply this relation to
the energy radiated by a particle which has an acceleration history v̇(t):

∫ ∞

−∞

dE
dt

dt =
∫ ∞

−∞

e2

6πε0c3
|v̇(t)|2 dt =

∫ ∞

−∞

e2

6πε0c3
|v̇(ω)|2 dω . (6.29)

Now, what we really want is
∫ ∞

0 · · · dω rather than
∫ ∞
−∞ · · · dω. Since the acceleration is

a real function, there is another theorem in Fourier analysis which tells us that
∫ ∞

0
|v̇(ω)|2 dω =

∫ 0

−∞
|v̇(ω)|2 dω ,

and hence we find

total emitted radiation =
∫ ∞

0
I (ω) dω =

∫ ∞

0

e2

3πε0c3
|v̇(ω)|2 dω .

Therefore

I (ω) = e2

3πε0c3
|v̇(ω)|2 . (6.30)

Z 1

0
I(!)d! =

Z 1

0

q2

6⇡"0c3 2|v̇(!)|2d!

I(!) =
q2

3⇡"0c3 |v̇(!)|2
: Lorentz 

InvariantI⌫/⌫
3

Specific Intensity I⌫



Spectra
Radiation received from a source is the sum of emission from a
large population of particles.  

Energy distribution of the particles shape the spectra

       Thermal distribution             Non-thermal distribution
           Maxwell-Boltzmann                  Non-Maxwellian, e.g. power-law
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Radiation is modified during propagation through matter

dI�
d⇥�
= �I� + S�

dI⇥
ds
= ��⇥I⇥ + j⇥

S� for a thermal source is the Planck function B�

B� =
2h�3

c2
1

exp(h�/kT) � 1

Radiative transfer

I⌫ = I0
⌫e
�⌧⌫ + S⌫(1 � e�⌧⌫ )

S⌫ ⌘ j⌫/↵⌫ ; d⌧⌫ = ↵⌫ds

✏⌫ =
Z

j⌫ d⌦
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Quantum Mechanical View
All e.m. radiation
arises from transition
between levels with
difference in electric
or magnetic moment

Transition probability 

exp(i⇥k.⇥r) = 1

� | ⇥ f | exp(i⇥k.⇥r) ⇥l.�⇥⇧ | i ⇤ |2

[ dipole approximation ]

- Levels could be discrete or in continuum
- Between each pair of levels emission and absorption
- Transitions dipole / higher multipole

g2B21 = g1B12 A21 = 2h�3B21/c2

� =
�E
h

;

All emission processes have their inverse
(absorption, stimulated emission)

j
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n2A21
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g1
:  population inversion and maser emission
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Blackbody constitutes the maximum emission by a thermal source 
at a given temperature

I⌫ = B⌫(T) + e�⌧⌫ (I0
⌫ � B⌫(T))

In Rayleigh-Jeans’ regime B⌫(T) = 2⌫2kT/c2

Let background temperature Tbg = c2I0
⌫/2⌫

2k

And “Brightness Temperature” Tb = c2I⌫/2⌫2k

Then Tb = T + e�⌧⌫ (Tbg � T) : lies between Tbg  and T

T < Tbg : “absorption”; T > Tbg : “emission” 

Spectral lines: high over a narrow frequency range ⌧⌫
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Blackbody function

At large optical depth a thermal source will emit blackbody intensity.
Emission will be received from a photosphere

Optical depth is frequency-dependent.  A source could be optically thick
at some frequencies, optically thin at others.



Sources of Radiation
• Accretion disk, corona, winds, jets, surrounding material

Main radiation components
• Optically thick emission from disk:  Blackbody, multi-temperature

• Spectral lines from disk photosphere:  e.g. Relativistic Fe line

• Optically thin emission from corona, outflow, jets: Bremsstrahlung, 
Synchrotron, Compton

• Reflection from the disk: Compton, Fluorescence

Each has a distinct spectral signature

Radiation from accreting Compact Objects



Matter accreting onto a compact star can have a high fraction
                     of its rest energy extracted.                
             for NS/BH, 0.03% for WD. (compare: ~0.7% for H burn)⌘ ⇠ 10%

Maximum Radiative Luminosity (Eddington Limit)

Hence Eddington accretion rate

If converted directly to thermal energy then expect  (e.g. shock)

kT ⇠ ⌘mpc
2 ⇠ 100MeV

In practice energy release is more gradual, at lower temperatures

✓ ⌘
0.1

◆

LEdd =
4⇡Gµmpc
�T

M = 1.26 ⇥ 1038 erg/s
 

M
M�

!
µ

ṀEdd =
LEdd

⌘c2 = 1.4 ⇥ 1018 g/s
 

M
M�

!  
0.1
⌘

!
µ

⌘ = GM/(Rc2)

(inward gravitational force balanced by outward radiative force)

Ṁ > ṀEdd may lead to
heavy mass loss / common
envelope evolution



Disk forms due to angular

momentum + viscosity

Keplerian thin accretion disk:

7

If the flow past the body is not symmetric, then there is a net angular
momentum in the captured matter. This is true also in case of the matter
accreted in a Roche Lobe Overflow. The angular momentum will cause
the matter to form a ring around the accretor. The ring will intersect the
accretion stream and dissipation will ensue. Eventually through viscous
dissipation matter will proceed to smaller and smaller orbits, angular mo-
mentum being transported outwards in the process. This forms an accretion
disk around the accretor, which is encountered in a wide variety of accre-
tion situations. At any radius R of the disk the matter rotates around the
central mass at the local Keplerian speed v� =

p
GM/R, i.e. the angular

speed ⌦ =
p

GM/R3. As matter in inner orbits rotate faster than that in
outer orbits, viscosity can make angular momentum flow outwards in the
disk, and sustain an inward flow. If vr(R) is the radial inflow velocity at
radius R and ⌃(R) is the surface mass density at that radius then by con-
tinuity of mass 2⇡R⌃(R)vr(R) = Ṁ, the mass accretion rate. In a steady
state the above product is constant at all radii. Normally this vr is much
smaller than the Keplerian speed v� at the same radius, and therefore the
kinetic energy of matter is dominated by the Keplerian motion. It follows
therefore that of the Gravitational potential energy released in the process
of matter coming to radius R from far away, nearly half the energy remains
in kinetic energy and the rest must have been radiated away.

If ⌫ is the coe�cient of kinematic viscosity, then the viscous force per unit
length around the circumference at any R is ⌫⌃(Rd⌦/dR). So the viscous
torque around the whole circumference is ⌧(R) = R(2⇡R)⌫⌃(Rd⌦/dR).

Now consider a ring of material between R and R + dR. In unit time,
material of amount Ṁ enters R + dR with specific angular momentum
(R+ dR)2⌦(R+ dR) and leaves R with specific angular momentum R2⌦(R).
This loss of angular momentum takes place because of the action of net
viscous torque (d⌧/dR)dR. Thus

Ṁ
d(R2⌦)

dR
= � d

dR

"
⌫⌃2⇡R3 d⌦

dR

#

Using Keplerian ⌦ and integrating, one finds

⌫⌃ =
Ṁ
3⇡

"
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where the boundary condition used is that the shear ⌧ vanishes at an inner
radius R⇤. This inner radius could be the last stable orbit around a black
hole, or the stellar surface in case of a white dwarf or a weakly magnetized
neutron star, or approximately the Alfvén radius (distance at which the
ram pressure of accreting matter equals the magnetic pressure) around a
strongly magnetized accretor.

The viscous dissipation rate per unit area can then be computed:

D(R) = ⌫⌃
 
R
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dR
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This must be radiated away. The disk is nearly optically thick and hence
the emitted radiation can be approximated to be a blackbody at the local
temperature T(R). Accounting for the two surfaces of the disk, D(R) =
2�T4. Therefore

T(R) =
(

3GMṀ
8⇡R3�
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Magnetic fields anchored to the accretion disk can play a very important
and interesting role. In figure 2 consider a magnetic field line anchored
to the disk at P. The field line rotates with the keplerian angular speed at
P. The disk being hot, matter will evaporate from the surface and move
preferentially along magnetic field lines. One such blob, at R, will now
be rotating faster than the local Keplerian speed and feel a net centrifugal
acceleration outward. Such an e↵ect can e↵ectvely cause matter to leave the
disk. Beyond the Alfvén distance, the field lines will twist and wrap around
the rotation axis, resulting in a highly collimated matter outflow along the
polar axes. This is now considered the most important mechanism for jet
formation in accreting systems.
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viscous dissipation rate per unit area: 

balancing this with local blackbody emission:
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Fig. 5.1. A ring of matter of mass m placed in a Kepler orbit at R = R0 spreads out under

the action of viscous torques. The surface density Σ, given by equation (5.10), is shown as a

function of x = R/R0 and the dimensionless time variable τ = 12νtR−2
0 , with ν the constant

kinematic viscosity.

vR ∼ ν/R; (5.12)

therefore (5.11) may be re-expressed as

tvisc ∼ R/vR; (5.13)

tvisc is known as the viscous or radial drift timescale, since in the form (5.13) it gives
an estimate of the timescale for a disc annulus to move a radial distance R.

From the diffusion equation (5.8) we see that if in some region of the disc Σ has
spatial gradients characterized by a lengthscale l ̸= R in general, tvisc will be given by
∼ l2/ν. In particular, density enhancements involving sharp spatial gradients (small
l) diffuse more quickly than smoother density distributions.

From (5.9) and (5.10), with ν = constant, we get
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∂

∂R
ln(R1/2Σ)

= − 3ν

R0

∂

∂x
ln(x1/2Σ)

Fr
an

k,
 K

in
g 

& 
R

ai
ne

 2
00

2



Keplerian motion near a Black Hole

r / rg

E 
/ m

c2

Innermost Stable
Circular Orbit (ISCO):

r = 3rg

rg = 2GMBH/c2 =  3 km (MBH / M⦿)

( J / mcrg)2

Schwarzschild Horizon Radius



1
9
7
2
A
p
J
.
.
.
1
7
8
.
.
3
4
7
B

Critical radii in Kerr Geometry

ISCO

Bardeen, Press & Teukolsky 1972



Thermal emission from Accretion Disk
Standard Keplerian Disk can extend down to ISCO:  9(MBH/M⦿) km for 
non-rotating Black Hole, even closer for rotating BH. 

Temperature of the disk is a function of radius.  For standard optically thick,
geometrically thin, keplerian accretion disk
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Fig. 5.2. The continuum spectrum Fν of a steady optically thick accretion disc radiating

locally as a blackbody, for discs with different ratios Rout/Rin. For non-magnetic white dwarfs

and neutron stars Rin = R∗, while for magnetic objects Rin = rM (Section 6.3), and for black

holes Rin = rmin (Section 7.7). The frequency is normalized to kTout/h where Tout = T (Rout).

These spectra illustrate the relative extent of the ‘ν1/3’ continuum for discs with differing

temperature ranges. In particular, discs around white dwarfs with Rout ∼ 102Rin do not

possess an obvious power law character.

The spectrum given by (5.45) is shown in Fig. 5.2. The shape of this spectrum
is easy to deduce from (5.45). First, for frequencies ν ≪ kT (Rout)/h the Planck
function Bν takes the Rayleigh–Jeans form 2kTν2/c2; hence (5.45) gives Fν ∝ ν2.
For ν ≫ kT∗/h each Planck function Bν assumes the Wien form 2hν3 c− 2 e− hν/kT :
the integral in (5.45) is dominated by the hottest parts of the disc (T ∼ T∗) and
the integrated spectrum is exponential. For intermediate frequencies ν such that
kT (Rout)/h ≪ ν ≪ kT∗/h we let x = hν/kT (R) ∼= (hν/kT∗)(R/R∗)3/4. Then (5.45)
becomes approximately

Fν ∝ν1/3

∫ ∞

0

x5/3

ex −1
dx ∝ν1/3 (5.46)

since the upper limit in the integral is hν/kT (Rout) ≫ 1 and the lower limit is
hν/kT∗ ≪ 1. Thus the integrated spectrum Fν (Fig. 5.2) is a stretched-out black-
body; the ‘flat’ part Fν ∝ν1/3 is sometimes considered a characteristic disc spectrum.
However, unless Tout = T (Rout) is appreciably smaller than T∗ this part of the curve
may be quite short and the spectrum is not very different from a blackbody. In Section
5.7 we shall see that the disc continuum is likely to differ considerably in detail from
this simple picture.

Disk Blackbody spectrum

Frank, King & Raine 2002Tmax / M�1/4
BH

Temperature of the disk is a function of radius.  For standard optically thick,
geometrically thin, keplerian accretion disk

Typically soft emission
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165 6.3 Bremsstrahlung

Fig. 6.2 The spectrum of bremsstrahlung resulting from the acceleration of the electron parallel and perpendicular to its initial
direction of motion (Jackson, 1999).

At high frequencies, there is an exponential cut-off in the radiation spectrum

I (ω) = Z2e6

48π3ε3
0c3m2

ev
2

ω

γ vb

[
1
γ 2

+ 1
]

exp
(

−2ωb
γ v

)
. (6.35)

Note the origin of this cut-off. The duration of the relativistic collision is roughly τ = 2b/γ v

(see Fig. 5.4). Thus, the dominant Fourier component of the radiation spectrum corresponds
to frequencies ν ≈ 1/τ = γ v/2b and hence to ω ≈ πvγ /b, that is, to order of magnitude,
ωb/γ v ≈ 1. The exponential cut-off means that there is little power emitted at frequencies
greater than ω ≈ γ v/b.

The low frequency spectrum has the form

I (ω) = Z2e6

24π4ε3
0c3m2

ev
2

1
b2

[

1 + 1
γ 2

(
ωb
γ v

)2

ln2
(

ωb
γ v

)]

. (6.36)

In the limit ωb/γ v ≪ 1, the second term in square brackets can be neglected and hence a
good approximation for the low frequency intensity spectrum is

I (ω) = Z2e6

24π4ε3
0c3m2

eb2v2
= K . (6.37)

As noted above, the low frequency spectrum is almost entirely due to the momentum
impulse perpendicular to the direction of travel of the electron. We could have guessed
that the low frequency spectrum of the emission would be flat because, so far as these
frequencies are concerned, the momentum impulse is a delta function, that is, the duration
of the collision is very much less than the period of the waves. The Fourier transform
of a delta function is a flat spectrum I (ω) = constant. To a good approximation, the low
frequency spectrum is flat up to frequency ω = γ v/b above which the spectrum falls off
exponentially. Note also that, once again, the factor γ has disappeared from the intensity
spectrum (6.37), even in the relativistic case. We recall that the momentum impulse is the
same in the relativistic and non-relativistic cases as was demonstrated by the expression
(5.20).

Bremsstrahlung
single encounter
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give similar results.

v̇x (ω) = 1
(2π )1/2

∫ ∞

−∞

γ Ze2vt
4πε0me[b2 + (γ vt)2]3/2

exp(iωt) dt , (6.32a)

v̇z(ω) = 1
(2π )1/2

∫ ∞

−∞

γ Ze2b
4πε0me[b2 + (γ vt)2]3/2

exp(iωt) dt . (6.32b)

Changing variables to x = γ vt/b,

v̇x (ω) = 1
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x
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Ze2

4πε0me

1
bv

I2(y) , (6.33b)

where y = ωb/γ v. The integrals I1(y) and I2(y) are

I1(y) = 2iyK0(y) I2(y) = 2yK1(y) ,

where K0 and K1 are modified Bessel functions of order zero and one (Gradshteyn and
Ryzhik, 1980; Abramovitz and Stegun, 1965). The radiation spectrum of the electron in an
encounter with a charged nucleus with collision parameter b is therefore

I (ω) = e2

3πε0c3

[
|a∥(ω)|2 + |a⊥ (ω)|2

]
,

= e2

3πε0c3

1
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γ 2v2

[
1
γ 2

K 2
0

(
ωb
γ v

)
+ K 2

1

(
ωb
γ v

)]
. (6.34)

The radiation spectrum, displaying separately the terms arising from the accelerations
parallel and perpendicular to the direction of motion of the electron, is shown in Fig. 6.2
(Jackson, 1999). The impulse perpendicular to the direction of travel contributes the greater
intensity, even in the non-relativistic case, γ = 1. In addition, this component results in
significant radiation at low frequencies. When the particle is relativistic, the intensity due
to acceleration along the trajectory of the particle is decreased by a factor of γ −2 relative to
the non-relativistic case. Thus, the dominant contribution to the radiation spectrum results
from the momentum impulse perpendicular to the line of flight of the electron.

It is instructive to study the asymptotic limits of K0(y) and K1(y). These are:

y ≪ 1 K0(y) = − ln y; K1(y) = 1/y ,

y ≫ 1 K0(y) = K1(y) = (π/2y)1/2 exp(−y) .
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give similar results.
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where y = ωb/γ v. The integrals I1(y) and I2(y) are

I1(y) = 2iyK0(y) I2(y) = 2yK1(y) ,

where K0 and K1 are modified Bessel functions of order zero and one (Gradshteyn and
Ryzhik, 1980; Abramovitz and Stegun, 1965). The radiation spectrum of the electron in an
encounter with a charged nucleus with collision parameter b is therefore
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The radiation spectrum, displaying separately the terms arising from the accelerations
parallel and perpendicular to the direction of motion of the electron, is shown in Fig. 6.2
(Jackson, 1999). The impulse perpendicular to the direction of travel contributes the greater
intensity, even in the non-relativistic case, γ = 1. In addition, this component results in
significant radiation at low frequencies. When the particle is relativistic, the intensity due
to acceleration along the trajectory of the particle is decreased by a factor of γ −2 relative to
the non-relativistic case. Thus, the dominant contribution to the radiation spectrum results
from the momentum impulse perpendicular to the line of flight of the electron.

It is instructive to study the asymptotic limits of K0(y) and K1(y). These are:

y ≪ 1 K0(y) = − ln y; K1(y) = 1/y ,

y ≫ 1 K0(y) = K1(y) = (π/2y)1/2 exp(−y) .

Spectrum
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spectrum
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166 Radiation of accelerated charged particles

Finally, we integrate over all collision parameters which contribute to the radiation at
frequency ω. So far, we have performed a completely general analysis in the rest frame
of the electron. If the electron is moving relativistically, the number density of nuclei it
observes is enhanced by a factor γ because of relativistic length contraction. Hence, in
the moving frame of the electron, N ′ = γ N where N is the space density of nuclei in the
laboratory frame of reference. The number of encounters per second is N ′v and since all
parameters are now measured in the rest frame of the electron, we add superscript dashes to
all the relevant parameters. The radiation spectrum in the frame of the electron is therefore

I (ω′) =
∫ b′

max

b′
min

2πb′γ NvK db′ = Z2e6γ N

12π3ε3
0c3m2

e

1
v

ln
(

b′
max

b′
min

)
. (6.38)

6.4 Non-relativistic bremsstrahlung energy loss rate

First of all, we evaluate the total energy loss rate by bremsstrahlung of a high energy but
non-relativistic electron. We can therefore set γ = 1, drop the dashes on bmax and bmin and
neglect relativistic correction factors. Then, the low frequency radiation spectrum (6.38)
becomes

I (ω) = Z2e6 N

12π3ε3
0c3m2

e

1
v

ln % , (6.39)

where % = (bmax/bmin). Again, we have to make the correct choice of limiting collision
parameters bmax and bmin. For bmax, we integrate out to those values of b for which ωb/v = 1.
For larger values of b, the radiation at frequency ω lies on the exponential tail of the
spectrum and makes a negligible contribution to the intensity (see Fig. 6.2). For bmin, we
have the same options described in Sect. 5.2.2 – at low velocities, v ≤ (Z/137) c, we use
the classical limit, bmin = Ze2/8πε0mev

2 (expression (5.10)). This would be appropriate
for the bremsstrahlung of a region of ionised hydrogen at T ≈ 104 K. At high velocities,
v ≥ (Z/137) c, the quantum restriction, bmin ≈ !/2mev (expression (5.11)), should be used
and this is the appropriate limit to describe, for example, the X-ray bremsstrahlung of hot
intergalactic gas in clusters of galaxies. Thus, the choices are

% = 8πε0mev
3

Ze2ω
for low velocities , (6.40a)

% = 2mev
2

!ω
for high velocities . (6.40b)

Notice that we have simplified the algebra by restricting the analysis to the flat, low
frequency part of the radiation spectrum. There is, as usual, a cut-off at high frequencies
corresponding to bmin.

It is interesting to compare our result with the full answer derived by Bethe and Heitler
who carried out a full quantum mechanical treatment of the radiation process (Bethe and
Heitler, 1934; Carron, 2007). The electron cannot give up more than its total kinetic
energy in the radiation process and so no photons are radiated with energies greater than
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Finally, we integrate over all collision parameters which contribute to the radiation at
frequency ω. So far, we have performed a completely general analysis in the rest frame
of the electron. If the electron is moving relativistically, the number density of nuclei it
observes is enhanced by a factor γ because of relativistic length contraction. Hence, in
the moving frame of the electron, N ′ = γ N where N is the space density of nuclei in the
laboratory frame of reference. The number of encounters per second is N ′v and since all
parameters are now measured in the rest frame of the electron, we add superscript dashes to
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First of all, we evaluate the total energy loss rate by bremsstrahlung of a high energy but
non-relativistic electron. We can therefore set γ = 1, drop the dashes on bmax and bmin and
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where % = (bmax/bmin). Again, we have to make the correct choice of limiting collision
parameters bmax and bmin. For bmax, we integrate out to those values of b for which ωb/v = 1.
For larger values of b, the radiation at frequency ω lies on the exponential tail of the
spectrum and makes a negligible contribution to the intensity (see Fig. 6.2). For bmin, we
have the same options described in Sect. 5.2.2 – at low velocities, v ≤ (Z/137) c, we use
the classical limit, bmin = Ze2/8πε0mev

2 (expression (5.10)). This would be appropriate
for the bremsstrahlung of a region of ionised hydrogen at T ≈ 104 K. At high velocities,
v ≥ (Z/137) c, the quantum restriction, bmin ≈ !/2mev (expression (5.11)), should be used
and this is the appropriate limit to describe, for example, the X-ray bremsstrahlung of hot
intergalactic gas in clusters of galaxies. Thus, the choices are
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Notice that we have simplified the algebra by restricting the analysis to the flat, low
frequency part of the radiation spectrum. There is, as usual, a cut-off at high frequencies
corresponding to bmin.

It is interesting to compare our result with the full answer derived by Bethe and Heitler
who carried out a full quantum mechanical treatment of the radiation process (Bethe and
Heitler, 1934; Carron, 2007). The electron cannot give up more than its total kinetic
energy in the radiation process and so no photons are radiated with energies greater than
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over the collision parameters and then over a Maxwellian distribution of electron velocities

Ne(v) dv = 4π Ne

( me

2πkT

)3/2
v2 exp

(
−mev

2

2kT

)
dv . (6.44)

The algebra becomes somewhat cumbersome at this stage. We can find the correct order-
of-magnitude answer if we write 1

2 mev
2 = 3

2 kT in (6.39). Then, an approximate expression
for the spectral emissivity of a plasma of electron density Ne in the low frequency limit is

I (ω) ≈ Z2e6 N Ne

12
√

3π3ε3
0c3m2

e

( me

kT

)1/2
g(ω, T ) , (6.45)

where g(ω, T ) is known as a Gaunt factor. Note that the low frequency spectrum is more
or less independent of frequency, the only dependence upon ω being the slowly varying
function in the Gaunt factor. At high frequencies the spectrum of thermal bremsstrahlung
cuts off exponentially as exp(−!ω/kT ), reflecting the exponential decrease in the popu-
lation of electrons in the high energy tail of a Maxwellian distribution. Finally, the total
energy loss rate of the plasma may be found by integrating the spectral emissivity over all
frequencies. Because of the exponential cut-off, the correct functional form is obtained by
integrating (6.45) from 0 to ω = kT/!, that is,

− dE
dt

= (constant) Z2T 1/2ḡN Ne . (6.46)

Detailed calculations give the following results, in terms of the frequency ν rather than the
angular frequency ω. The spectral emissivity of the plasma is

κν = 1
3π2

(π

6

)1/2 Z2e6

ε3
0c3m2

e

( me

kT

)1/2
g(ν, T ) N Ne exp

(
− hν

kT

)
(6.47)

= 6.8 × 10−51 Z2T −1/2 N Ne g(ν, T ) exp(−hν/kT ) W m−3 Hz−1 ,

where the number densities of electrons Ne and of nuclei N are in particles per cubic metre.
At frequencies hν ≪ kT , the Gaunt factor has only a logarithmic dependence on frequency.
Suitable forms at radio and X-ray wavelengths are:

Radio : g(ν, T ) =
√

3
2π

[
ln

(
128ε2

0k3T 3

mee4ν2 Z2

)
− γ 1/2

]
, (6.48a)

X-ray : g(ν, T ) =
√

3
π

ln
(

kT
hν

)
, (6.48b)

where γ = 0.577 . . . is Euler’s constant. The functional forms of both logarithmic terms
in (6.48a,b) can be readily derived from the corresponding expressions (6.40a,b). For
frequencies hν/kT ≫ 1, g(ν, T ) is approximately (hν/kT )1/2.

The total loss rate of the plasma is

−
(

dE
dt

)

brems
= 1.435 × 10−40 Z2T 1/2ḡN Ne W m−3 . (6.49)

Detailed calculations show that the frequency averaged value of the Gaunt factor ḡ lies in
the range 1.1–1.5 and thus, to a good approximation, we can write ḡ = 1.2. The subject

Emission per unit volume

P1: JZP Trim: 246mm × 189mm Top: 10.193 mm Gutter: 18.98 mm

CUUK1326-06 CUUK1326-Longair 978 0 521 75618 1 August 12, 2010 15:28

168 Radiation of accelerated charged particles
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−mev

2

2kT

)
dv . (6.44)

The algebra becomes somewhat cumbersome at this stage. We can find the correct order-
of-magnitude answer if we write 1

2 mev
2 = 3

2 kT in (6.39). Then, an approximate expression
for the spectral emissivity of a plasma of electron density Ne in the low frequency limit is

I (ω) ≈ Z2e6 N Ne

12
√

3π3ε3
0c3m2

e

( me

kT

)1/2
g(ω, T ) , (6.45)

where g(ω, T ) is known as a Gaunt factor. Note that the low frequency spectrum is more
or less independent of frequency, the only dependence upon ω being the slowly varying
function in the Gaunt factor. At high frequencies the spectrum of thermal bremsstrahlung
cuts off exponentially as exp(−!ω/kT ), reflecting the exponential decrease in the popu-
lation of electrons in the high energy tail of a Maxwellian distribution. Finally, the total
energy loss rate of the plasma may be found by integrating the spectral emissivity over all
frequencies. Because of the exponential cut-off, the correct functional form is obtained by
integrating (6.45) from 0 to ω = kT/!, that is,

− dE
dt

= (constant) Z2T 1/2ḡN Ne . (6.46)

Detailed calculations give the following results, in terms of the frequency ν rather than the
angular frequency ω. The spectral emissivity of the plasma is

κν = 1
3π2
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0c3m2

e
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(6.47)

= 6.8 × 10−51 Z2T −1/2 N Ne g(ν, T ) exp(−hν/kT ) W m−3 Hz−1 ,

where the number densities of electrons Ne and of nuclei N are in particles per cubic metre.
At frequencies hν ≪ kT , the Gaunt factor has only a logarithmic dependence on frequency.
Suitable forms at radio and X-ray wavelengths are:

Radio : g(ν, T ) =
√

3
2π

[
ln

(
128ε2

0k3T 3

mee4ν2 Z2

)
− γ 1/2

]
, (6.48a)

X-ray : g(ν, T ) =
√

3
π

ln
(

kT
hν

)
, (6.48b)

where γ = 0.577 . . . is Euler’s constant. The functional forms of both logarithmic terms
in (6.48a,b) can be readily derived from the corresponding expressions (6.40a,b). For
frequencies hν/kT ≫ 1, g(ν, T ) is approximately (hν/kT )1/2.

The total loss rate of the plasma is

−
(

dE
dt

)

brems
= 1.435 × 10−40 Z2T 1/2ḡN Ne W m−3 . (6.49)

Detailed calculations show that the frequency averaged value of the Gaunt factor ḡ lies in
the range 1.1–1.5 and thus, to a good approximation, we can write ḡ = 1.2. The subject
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Curvature Radiation

Relativistic Charged Particles moving along curved field lines

- Shares most properties of Synchrotron Radiation
  (replace Larmor radius by the radius of curvature of 
   field lines)

- Polarization || to the projected field lines
  (Synchrotron: polarization perp. to projected B)

Important in pulsar magnetospheres, magnetars



Acceleration processes generating relativistic particles often produce a 
non-thermal, power-law distribution of particle energies:
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Non-thermal Emission

This produces a power-law synchrotron radiation spectrum:
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Jitter radiation can steepen the low-frequency cutoff:
      - Low energy particles have longer duration of E-field pulse per orbit
      - More affected by pitch angle scattering before pulse completion

(Medvedev 2000)
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Spectral regimes in Synchrotron Emission



Inverse Compton Scattering

high-energy 
photon

Related processes: Compton Scattering
Thomson Scattering

Scattering processes

Non-resonant / resonant
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Synchrotron power:

Compton power:

Inverse Compton Process

Scattered photon energy

per electron

⌫i : ⌫0 : ⌫f = 1 : � : �2

Like Synchrotron, here too ⌫sc / �2 and Psc / �2

So non-thermal IC by electron energy distribution N(�) / ��p

leads to a optically thin radiation spectrum I⌫ / ⌫�(p�1)/2

Synchrotron photons produced in an emission volume may be
compton upscattered by the same electrons: Synchrotron Self Compton



Synchrotron 
(seed)

Compton

PKS 2155-304

Helene et al 2012



Electron scattering optical depth 

Thermal Comptonization

• Thermal distribution of electron energies
• Repeated scatterings
• Energy transfer both ways:   electron ⇌ photon

The Compton y parameter  :  a measure of importance of comptonization

= (av. no. of scatterings) x (mean fractional energy change per scattering)y

(⌧es.⌧2
es)

⌧es ⇠ �TR
⇒ Av. number of scatterings = Max

= Max (↵,↵2)

[↵ = 4kT/mec2]per
scattering

✓
�✏
✏

◆

For 

In general, numerical radiative transfer required to describe spectra adequately

↵� 1 and soft photon input (✏i ⌧ mec2/↵), emergent intensity

if is small.  Here⌧es k = � ln(⌧es)/ ln(↵2)
I(✏) / ✏�k

For ↵⌧ 1 (non-relativistic electrons), photons random walk in energy space.

Can be described by a Boltzmann Equation ⇒ Kompaneets Equation

Result can be diverse, but some limiting cases have interesting properties
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power-law solution: 
n a x m ,  

4 
Y 

m ( m + 3 ) -  - =0, 

(7.76b) 

(7.76~) 

(7.76d) 

where the Compton y parameter is given in Eq. (7.41a). The + root in Eq. 
(7.76d) is appropriate if y > l  (leading to the low-frequency limit of the 
Wien law in the limit y - + o o , i , c c x 3 n a x 3 ) ;  for y<<l, the minus root is 
appropriate. For y-1, one must take a linear combination of the two 
solutions, and no power law exists. 

Figure 7.5 illustrates the spectrum resulting from unsaturated Comptoni- 
zation. Note that measurement of only the shape of an unsaturated 
Compton spectrum with soft photon source determines both the electron 
temperature and the scattering optical depth of the source. The emergent 
intensity in the power-law regime satisfies 

1, - i,, ( $ ) + m. (7.77) 

The spectrum is clearly sensitive to y .  The input energy is significantly 
amplified for m 2 -4, that is, y 2 1. This result is quite analogous to that 
for the relativistic case considered previously in §7.5. Unsaturated Comp- 
ton spectra are treated in some detail in Shapiro, Lightman, and Eardley 
(1976) and Katz (1976). 
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h 

Fi- 7.5 Spctrum prodrrced by unsatumted Comptonization of low eneqp 
photons by thermal electrons. 
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-\ y 3 <, I ,  v , I. 7' 

log v 

Figure 7.4 Spectrum from a thermal, nonrelativistic medium chamcterized by 
free-free emission and absorption and by saturated k r s e  Compton scattering. 
At  low frequencies the spectnun is bkckbody then becomes modified blackbody 
luui, at high fiequench, becomes a Wwn spectrum 

The rate at which energy is generated in the Comptonized spectrum can 
be calculated approximately by shifting all of the bremsstrahlung photons 
to energies kT: 

dWW dt d V  (erg - '  cm-')-kT/( g ) d v  hv 

Here 4f(erg s - '  cm-' Hz-I) is the bremsstrahlung (free-free) energy 
generation rate given by Eq. (5.14), and d(erg  s-'  cm-') given by Eq. 
(5.15) is the total energy per unit time per unit volume. This integral may 
be approximated by evaluating g at the lower limit, vCh, and letting ephVlkT 
be a step function that is unity for hv <kT and then zero for hv>kT. The 
result is, using the analytical approximation to 2 given in Fig. 5.2, 

(7.74a) 

3 
~ ( p ,  T)= - 4 [ ln(2.25/~~,,,)]~. (7.74b) 

Here A(p,T) is the factor by which inverse Compton amplifies the 
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portant at all frequencies. From Eqs. (7.41), (7.42), and (5.18), for X,,h<<l, 

(7.65a) 

From Eqs. (7.64) and (7.65), we see that inverse Compton is important, 
and xcoh is defined, only when x,,h <x,. 

Modified Blackbody Spectra; y << 1 

For y<< 1, only coherent scattering is important. Then, from Problem 1.10, 
we have for the emergent intensity in a scattering and absorbing medium 

2 4  I” = (7.66) 

The functional form of Eq. (7.66), in the limit Kes>>K,hv>, may also be 
derived by the simple random-walk considerations leading to Eq. (1.102). 
We see that at values of x<<x, Eq. (7.66) reduces to the blackbody 
intensity, whereas at values of x>x0 Eq. (7.66) becomes a “modified 
blackbody spectrum,” 

I,”” = 2 (7.67a) 

=8.4x 10-4~5/4,,1/2-’/2 3/2e-X/2(eX- gfl 
X erg s - ’  cm-2 Hz-’  ster-I. (7.67b) 

For xo<< 1 Eq. (7.63bj gives the approximate equation for xo: 

x,-6.3 x 1 0 ’ * ~  -7/4pi/2[ gr,(xo)]’/2. (7.68) 

Note that at frequencies xo<< x << 1, I,”” cc Y instead of the Rayleigh-Jeans 
law IvWa v2. The total flux in a modified blackbody spectrum is approxi- 
mately 

(7.69) 
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Compton Reflection (backscatter) from the accretion disk

• Ineffective below 10 keV due to photoelectric absorption

Photoelectric

Thomson

Solar composition

• Drops above ~50 keV due to photon energy loss and KN cutoff

Results in a broad reflection hump in hard X-rays



Compton Reflection (backscatter) from the accretion disk

Results in a broad reflection hump in hard X-rays
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Line emission



X-ray Spectral lines

Lα

Characteristic X-ray lines are generated by inner shell transitions
Can be used to identify elements



X-ray Spectral lines
Gas at high temperature may be highly ionised

Abundance of different ionisation states determined 
by statistical equilibrium

• Photoionisation

• Collisional ionisation 

(impact, charge exchange)

• Autoionisation

• Radiative recombination

• Charge exchange

• Dielectronic recombination

Detailed balance ⇒ Saha ionisation equilibrium

In general no detailed balance. 

Statistical equilibrium: net upward = net downward


Rate equations to be solved to determine population

In rapidly evolving systems (e.g. young SNRs)

ionisation equilibrium may not be reached ⇒  NEI
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Computation of radiation from tenuous hot plasma

Böhringer 1998
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Abundance: 
Solar

2 photonRecombination

bremsstrahlung

ned.ipac.caltech.edu



Abundance: 
Solar
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Electron in a magnetic field
B
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Cyclotron Resonance:

Absorption, Emission  

Magneto-Compton scattering

Resonant processes
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6.2: Monte Carlo simulations for Slab 1-0 with uniform magnetic fields 109

Figure 6.1: The Figure shows plot of the redshifted spectra for slab 1-0 geometry
with uniform field B0 = 0.03, Te = 5 KeV and optical depth ⌧T = 10�3. The left
panel shows the spectra for flat continuum fp(!) = 1 and the right panel shows the
spectra for PLCUT continuum with � = 0.91,!cut = 25.5 KeV, ! f old = 9.0 KeV.

Cyclotron resonance spectrum 
computed by Monte-Carlo method

Sandeep Kumar 2013

Slab 1-0;  B/Bc = 0.03 
cont opt depth 10-3 
Te = 5 keV, CPL cont.



Nuclear / particle processes

- Radioactivity  (e.g.  Al26 1.8 MeV)

- Decay of heavy mesons (e.g.               ) 
  generated in nuclear scattering (                   )

- Fusion

- Pair Annihilation

- Dark matter decay

Change in binding energy ➙ photon emission

�0 � 2�
p + p� �0

The Astrophysical Journal, 789:13 (23pp), 2014 July 1 Bulbul et al.

Figure 6. 3–4 keV band of the stacked XMM-Newton MOS spectrum of the
full sample. The spectrum was rebinned to make the excess at ∼3.57 keV more
apparent.
(A color version of this figure is available in the online journal.)

The surface brightness of the DM decay signal is proportional
to the DM column density SDM =

∫
los ρDM(r)dr . The observed

photon flux from the DM decay into a solid angle ΩFOV is given
by

FDM = MFOV
DM

4πD2
L

Γγ

ms

(1 + z) photons cm−2 s−1, (3)

where Γγ and ms are the decay rate and mass of the sterile
neutrino (see Equation (1) and Pal & Wolfenstein (1982)), MFOV

DM
is the projected DM mass within the spectral extraction region
(Rext, which is either R500 or RFOV), and DL is the luminosity
distance.

The DM mass projected along the line of sight is

MFOV
DM =

∫

los
ρDM(r)dr, (4)

where ρDM(r) is the distribution of dark matter determined by
the Navarro–Frenk–White (NFW) profile (Navarro et al. 1997)
and given by

ρDM(r) = ρc

(r/rs)(1 + r/rs)2
, (5)

where ρc is a characteristic density and rs is a scale radius. The
integration of the dark matter distribution within the extraction
radius (given in Table 4) is along the line of sight. An extraction
radius of 700′′ was used for the clusters larger than the FOV of
XMM-Newton, while an extraction radius of R500 was used for
the clusters smaller than the FOV.

The expected contribution of each cluster i to the total DM
line flux in the stacked spectrum is

ωi,dm =
M

proj
i,DM(< Rext)(1 + zi)

4πD2
i,L

ei

etot
, (6)

where zi is the redshift of the ith cluster and ei and etot are the
exposure time of the ith cluster and the total exposure time of
the sample, respectively.

The dark matter mass within the extraction radius is estimated
as

MDM(Rext) = Mtot(Rext) − Mgas(Rext) − M∗(Rext), (7)

where Mtot(Rext), Mgas(Rext), and M∗(Rext) are the total mass,
gas mass, and stellar mass in the extraction radius Rext, respec-
tively. The observed Vikhlinin et al. (2009) temperature–mass
scaling relation was used to infer total masses for the intra-
cluster gas temperatures measured from the XMM-Newtonob-
servations. The gas mass is determined following the method
described in Bulbul et al. (2010). The contribution of stars to the
total baryon budget is modest at large radii but more important
in the cluster centers because of the presence of cD galaxies.
At large radii (! R500), M∗ is 10%–15% of the gas mass (Lin
& Mohr 2004; Vikhlinin et al. 2006). Stellar masses of each
cluster were determined using the stellar mass–total mass scal-
ing relation (Gonzalez et al. 2013). The calculated dark matter
masses were corrected using this factor. The projected dark
matter masses within Rext were then determined by projecting
NFW profiles (Bartelmann 1996; Golse & Kneib 2002; Loewen-
stein et al. 2009). We used a concentration parameter c500 = 3
from the Vikhlinin et al. (2006) c−M500 scaling relation and
the median total mass within R500 of the full sample, which is
∼6 × 1014 M⊙. The projected dark matter mass within each
spectral extraction radius is given in Table 4.

Weights for the responses to be included in the stacked-
spectrum response were calculated as follows. The number of
dark matter decay photons in each cluster spectrum is

Si = α ωi,dm etot Ai, (8)

where Ai is the ancillary response (the instrument effective area)
at photon energy E/(1+zi), and α is the ratio of the decay rate of
sterile neutrinos to the sterile neutrino mass ms (here we denote
α ≡ Γγ /ms). The total number of dark matter photons in the
stacked line is

Sline =
i=73∑

i=0

Si

= α ωtot etot Aω, (9)

where the weighted ARF Aω is a function of the total weight
ωtot,

Aω =
∑

i

ωi

ωtot
Ai, (10)

and
ωtot =

∑

i

ωi . (11)

The weighted responses Aω were used to model our new line,
while X-ray count-weighted response files were used to model
the other known emission lines and the continuum components.

For MOS, the flux in the 3.57 keV line was 4.0+0.8
−0.8 (+1.8

−1.2) ×
10−6 photons cm−2 s−1, where the errors are 68% (90%).
For PN, at the best-fit energy of 3.51 keV, the line flux is
3.9+0.6

−1.0 (+1.0
−1.6) × 10−6 photons cm−2 s−1. If we fix the line

energy from the MOS fit, for PN we obtain the flux 2.5+0.6
−0.7

(+1.0
−1.1) × 10−6 photons cm−2 s−1.

We note that the line energy detected in the stacked PN
observations of the full sample is consistent with the K xviii
line at 3.515 keV. However, the measured flux from this line is a
factor of 20 above the expected flux of the K xviii line, estimated
based on the measured fluxes of the S xvi, Ca xix, and Ca xx
lines and assuming a consistent relative abundance for K xviii
along with the plasma temperature from AtomDB. In addition,
the detected energy in the stacked MOS observations of the full

10

Bulbul et al 2014


