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Production of X-ray radiation

Requires highly energetic particles

In the cosmic setting, X-rays are produced by three main
processes:

1. From very hot gas (Temperature > 1 million K),
thermal bremsstrahlung emission, atomic transitions

2. From relativistic electrons streaming through
magnetic fields, synchrotron emission

3. Compton Scattering of low-energy radiation field
by energetic electrons



Classical radiation theory

Electromagnetic fields of moving charges
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An accelerated electric charge emits e.m. radiation

Uniformly moving charge:
Coulomb Field : ~ 1/r2 from the current location of the charge

Accelerated charge:
Field line density at

J.J. Thomson
\ \ the ring: ~ 1/(2nr . Ctace)
, Propagating transverse
\ /—\/x electric field (radiation):
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Figure 3.2 Graphical demonstration of the 1/ R acceleration field. Charged ’ H ’ — F / ( / c ) 1/2
particle moving at uniform velocity in positive x direction is stopped at x = 0 and 0/ \H0o/ €0
t=0. from Rybicki & Lightman 1979

a — proper acceleration

dE q2|a|2 In the instantaneous
Emitted Power = — (—) — / |E X H\rzdﬂ — rest frame of the
dt 67T £0C3 charged particle

(Larmor Formula)



Moving Observer: dE/dt = dE’/dt’ (Lorentz invariant)

proper acceleration y = Lorentz factor

ay =y (larl” +¥’lgyl*)




Radiation Pattern
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Motion introduces aberration and relativistic beaming



Polarization
Eoc it x [(7 - f) x B]

At a single particle level, over short times, radiation is always
polarized.

For slowly moving particle (or E nearly || to71 ) polarization
is || to the projected instantaneous acceleration.

Net observed polarization involves average over the

particle’s trajectory, and over the distribution of emitting
particles.



Spectrum:
Fourier Transform of the time-varying electric field
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Spectra

Radiation received from a source is the sum of emission from a
large population of particles.

Energy distribution of the particles shape the spectra

Thermal distribution Non-thermal distribution

Maxwell-Boltzmann Non-Maxwellian, e.g. power-law
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Radiation is modified during propagation through matter

j» = emission _ .
Radiative transfer coefficient ' f Jv d€2
dI, : o, = absorption coefficient
% = —OCVIV + Jv
SV = ]‘1//0(1/ ! dTV — CKVdS
dl
V — _IV + SV 11/ — ISE_TV + Sv(l . e—qjv)
dt,

S, for a thermal source is the Planck function B,

2hv? 1
¢z exp(hv/kT) -1

B, =



Quantum Mechanical View

All e.m. radiation

arises from transition AE
between levels with NN\ Y- v = —
difference in electric L

or magnetic moment A

- Levels could be discrete or in continuum
- Between each pair of levels emission and absorption
- Transitions dipole / higher multipole

Transition probability o | f | exp(ik.?) LEV;|i ) ]
[ dipole approximation exp(il?.f) = 1]

All emission processes have their inverse
(absorption, stimulated emission)

By =¢1B1n 1 Ay = 2By /c?
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Blackbody constitutes the maximum emission by a thermal source
at a given temperature

I, = B,(T) + e " (I, — By(T))

In Rayleigh-Jeans’ regime B, (T) = 2v°kT/c?

Let background temperature Ty, = ¢°I; /2v°k

And “Brightness Temperature” T, = I, /21v%k

Then T, =T +e "(Iyg — T): lies between T, and T
I' < Tpg : “absorption”; T > Tpg : “emission”

Spectral lines: 7, high over a narrow frequency range



Blackbody function

log intensity

log frequency

At large optical depth a thermal source will emit blackbody intensity.
Emission will be received from a photosphere

Optical depth is frequency-dependent. A source could be optically thick
at some frequencies, optically thin at others.



Radiation from accreting Compact Objects

Sources of Radiation

* Accretion disk, corona, winds, jets, surrounding material

Main radiation components

* Optical
* Spectra
* Optical

y thick emission from disk: Blackbody, multi-temperature

lines from disk photosphere: e.g. Relativistic Fe line

y thin emission from corona, outflow, jets: Bremsstrahlung,

Synchrotron, Compton

* Reflection from the disk: Compton, Fluorescence

Each has a distinct spectral signature



Matter accreting onto a compact star can have a high fraction
n = GM/(Rc?) of its rest energy extracted.

n ~ 10% for NS/BH, 0.03% for WD. (compare: ~0.7% for H burn)

If converted directly to thermal energy then expect (e.g. shock)
KT ~ nmp62 ~ 100 MeV(Oil)

In practice energy release is more gradual, at lower temperatures

Maximum Radiative Luminosity (Eddington Limit)
drnGumyc

Lpgq = M = 1.26 x 10°® erg/s (ﬂ) u

ON) M@

(inward gravitational force balanced by outward radiative force)

Hence Eddington accretion rate

M > Mg may lead to
Mggq = Lpdd —14%108 g/s(ﬂ) (E)‘u heavy mass loss / common

nc? Mo\ 7 envelope evolution



Accretion Disk

Disk forms due to angular Keplerian thin accretion disk:
momentum + viscosity

Q = VGM/R? vo = YGMJR
| 2nRY(R)v,(R) = M accretion rate
al T(R) = R2nR)vX(RdACQ)/dR) viscous torque

. d(R*Q) B d 5 dC)
M R ——d—R[vZZHR dR]

integrating,

M R* 1/2
2. = 1 —
Y 31 | ( R ) ]
ViSscous d|SS|pat|on rate per unit area:
dQ) 3GMM [ - (R* )”2]

T=0.002
o |

EZR 02/ m

Frank, King & Raine 2002

0.5

0.45

04

dR 41t R3 R
balancing this with local blackbody emission:

3GMM RNV
T(R) = { 81tR30 [1 - (K) ]}
0.15

01 f - 3GMM
0.05 | R/R. -

D(R) = vX (R

03

0.25 |

T/T.

0.2

1/4
) = 1.12 keV(M/Mg)*R_>* M1




E /| mc2

Keplerian motion near a Black Hole
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Critical radii in Kerr Geometry
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Thermal emission from Accretion Disk

Standard Keplerian Disk can extend down to ISCO: 9(Mgn/Me) km for
non-rotating Black Hole, even closer for rotating BH.

Temperature of the disk is a function of radius. For standard optically thick,
geometrically thin, keplerian accretion disk
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Thermal emission from Accretion Disk

Standard Keplerian Disk can extend down to ISCO: 9(Mgn/Me) km for
non-rotating Black Hole, even closer for rotating BH.

Temperature of the disk is a function of radius. For standard optically thick,
geometrically thin, keplerian accretion disk

R\ /2 He Disk Blackbody spectrum
T(R) — T>|< 1 — ( ) | | | | | | |
R ,1/3
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Continuum Emission
Processes



Bremsstrahlung (free-free emission)

Spectrum
Radiation Electric field received by the

electron o
e NN observer is time dependent

Fourier transform of the
electric field yields the

spectrum
Z%eb o 1 wb wb
[(w) = K| — )+ K¢ (—)
(@) 24n4egc3m§v2 y2v? |:)/2 0 ()/U) "y
Bremsstrahlung | .
single encounter | Net observed spectrum is the
T TR sum of spectra from all

emitting particles

All encounters of

binax
[(a)/) — / an/vaK dp’ asingle electron

/ with velocity v

min

Z%e%y N 1 (b;nax)
= In

_ 3.3.3,2 0 /
127°e5¢c°mz v L

Integrate this over the velocity distribution



Thermal Bremsstrahlung

Velocity distribution
(Maxwellian) Jlackbody
Ne(v)dv = /
4N ( me )3/2 ) mevt\ 2 /
7T Ne viexp | — (D
2mkT P\ 2t § /
Emission per unit volume - W
Z?e®N N, Mme\ 1/2 Thermal
c \
_ —hw/kT 5 *
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Relativistic electron in a magnetic field

/Gyrating particle of charge Ze¢
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Synchrotron Radiation
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Curvature Radiation

Relativistic Charged Particles moving along curved field lines

- Shares most properties of Synchrotron Radiation
(replace Larmor radius by the radius of curvature of

field lines)

- Polarization || to the projected field lines
(Synchrotron: polarization perp. to projected B)

Important in pulsar magnetospheres, magnetars



Non-thermal Emission

Acceleration processes generating relativistic particles often produce a
non-thermal, power-law distribution of particle energies: N(y) oc Y7

This produces a power-law synchrotron radiation spectrum:

log intensity

Vsy OC )

Pwmy

Optically thin
non-thermal Synchrotron
from power-law particle

energy distribution

log frequency

jV oC V_(p_l)/z

av oC V_(p+4)/2

Sv oc 1/5/2



Spectral regimes in Synchrotron Emission

Emission peak of electrons

: at lower limit of E-distribution
Low-frequency talil

of single particle
emission spectrum

-(p-1)12

l 49 5 Tired

! electrons
Low-frequency ,

cutoff: Synchrotron

Self Absorption I

|
/

Jitter radiation can steepen the low-frequency cutoff:
- Low energy particles have longer duration of E-field pulse per orbit
- More affected by pitch angle scattering before pulse completion

(Medvedev 2000)



/ Scattering processes
\_)%/ Non-resonant / resonant

N

Inverse Compton Scattering

high-energy
photon

low-energy
hoton

L —
- electron >

Related processes: Compton Scattering
Thomson Scattering



Compton Scattering

log(o/oT)

2
8 ([ e _
Thomson cross section o7 = ( 2) = 6.65 X 107%° cm?
3 \mec
1 Klein-Nishina cross section
0.5 Thomson limit:
- high efficiency
- elastic scattering
O o
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Inverse Compton Process

4

Synchrotron power: gaTcley/zUB Scattered photon energy
. 4 2.2 vi:v’:vlezy:yz
Compton power: 30Tc,8 v Uph

per electron

Like Synchrotron, here too 1. « 7/2 and P.. « 7/2

So non-thermal IC by electron energy distribution N(y) oc 7

leads to a optically thin radiation spectrum [, oc v~ #~1)/2

Synchrotron photons produced in an emission volume may be
compton upscattered by the same electrons: Synchrotron Self Compton
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Thermal Comptonization

* Thermal distribution of electron energies
* Repeated scatterings
* Energy transfer both ways: electron — photon

In general, numerical radiative transfer required to describe spectra adequately

The Compton y parameter : a measure of importance of comptonization

Y = (av. no. of scatterings) x (mean fractional energy change per scattering)

A€\ 5
Electron scattering optical depth Tes ~ OTR < ) Max (&, a”)
= Av. number of scatterings = Max(TeS.TgS per [ = 4kT/meC2]
scattering

Fora > 1 and soft photon input (ei < mecz/oc), emergent intensity[(e) oC e_k

if Tes is small. Here k = —In(1.s)/ In(a?)

For &« < 1 (non-relativistic electrons), photons random walk in energy space.
Can be described by a Boltzmann Equation = Kompaneets Equation

Result can be diverse, but some limiting cases have interesting properties



Non-relativistic thermal Comptonization: Unsaturated
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from Rybicki & Lightman 1979



Non-relativistic thermal Comptonization: Saturated

log I,

V3 e-hv/kT

y

3KT/h
I |

»log v

from Rybicki & Lightman 1979



Compton Reflection (backscatter) from the accretion disk

* Ineffective below 10 keV due to photoelectric absorption
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c
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O
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» -25
O
g 26 Solar composition
o

-27
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1 10 100
Photon Energy (keV)

* Drops above ~50 keV due to photon energy loss and KN cutoff

Results in a broad reflection hump in hard X-rays



Compton Reflection (backscatter) from the accretion disk
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Line emission



X-ray Spectral lines

Characteristic X-ray lines are generated by inner shell transitions
Can be used to identify elements

My,5 (3d)

Mo 3 (3p) 9
M, (3s)

L3 (2P30)—@ l
Lo (2p40) ¢

L, (2s)




X-ray Spectral lines

Gas at high temperature may be highly ionised

Abundance of different ionisation states determined
by statistical equilibrium

* Photoionisation - Radiative recombination
» Collisional ionisation » Charge exchange
(impact, charge exchange) » Dielectronic recombination

« Autoionisation

Detailed balance = Saha ionisation equilibrium

In general no detailed balance.
Statistical equilibrium: net upward = net downward
Rate equations to be solved to determine population

In rapidly evolving systems (e.g. young SNRs)
lonisation equilibrium may not be reached = NEI/



Thermal Equilibrium lonisation
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Computation of radiation from tenuous hot plasma

evolution of the \ _
C | g % ) abundances) astrophys model / |

lonization equilibrium lonization evolution :
- n(A™) - nA™)

l 1

radiative emission

bremsstrahlung |
lines recombination rad. |
2-photon emission |

Transition rates from AtomDB

( spectrum)

cooling rate) m——
Bohringer 1998
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Electron in a magnetic field

A

P B photon
in
= \21(B/Bait) ; n=0,1,2,... .
Mel 23 €
Bt = eeh ~44x108 G

Cyclotron Resonance:

E, = \/77fz§c4+c2 2 + pA
n (pH pJ—n) ha)zes - \/1 + 21n(B/Bcrit) sin” 6 — 1

For py =0 and B << Bt MeC? sin? 0

7 for p| = 0

E, — m.c® = nhwe,

fiwee ~ 12 By keV Resonant processes

Absorption, Emission
Magneto-Compton scattering




Resonant cross sections
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d* N/dwdp

Cyclotron resonance spectrum
computed by Monte-Carlo method
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Nuclear / particle processes
Change in binding energy => photon emission

- Dark matter decay

I — 2y
p+p—>HO

XMM - MOS
Full Sample

3.57 + 0.02 (0.03)

. i
*
o0
*
2240,

) 3.6 .
Energy (keV) Bulbul et al 2014



