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Which one are the data?

A. The black points with error bars
B. The red/blue/green lines

C. Both the points and the lines
D. Neither the points nor the lines
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F'and k1, from plots like this:
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A. True
B. False
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These are the best-fitting parameters to the spectra:
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These (the green points in this plot) are

(finally!) the data:
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B. False



These are observed fluxes corrected by the
sensitivity of the instrument as a function of energy
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This is the observed flux, without correction
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The green points are (finally, finally!) the data:
A. True
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This is the observed flux, without correction
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We do not measure the flux; we count photons, and must
deduce their energy from instrumental calibration

Cu Ko

Ezcape

1e+d 4

Count

pile up

X-ravensray (keV

Detector response to incident quasi-monochromatic photons with
E ~ 8.03 keV



We do not measure the flux; we count photons, and must
deduce their energy from instrumental calibration

Count

pile up

10 15

Are these (finally, finally, finally!) the data?
No! We in fact measure a charge on a detector, and must deduce how
many photons, and of which energy, produced that charge



* [tis also a good rule not to put overmuch
confidence in the observational results that
are put forward until they are confirmed by
theory. (Sir Arthur Eddington)

* Nobody believes a model, except the one who
made it. Everyone believes an observation,
except the one who made it. (Albert Einstein)



And now, to the point
of these lectures...



Probability: Definitions

X, Y, Z = sets of events (either discrete or continuous)

~X, ~Y, ~Z = complement of the same sets of events (negation)

P (X) = Probability of X (Probability Distribution Function, PDF, of X)
P (X]Y) = Probability of X given Y (Conditional probability)

/Z = X or Y =set of events that belong to X, Y, or both (Union)

Z = X and Y = set of events that belong both to X and Y (Intersection)

with P(false) =0 and P (true) = 1, defining certainty.



Probability: Rules

P(~X)=1-P(X)
P(XandY)=P(X,Y)= P(X | Y) P(Y)

If X and Yare independent= P(X | Y)=P(X)
P(X,Y)=P(X) P(Y)

P(X orY)= P(X) + P(Y)- P(X.,Y)

If X and Y are mutually exclusive = P(X,Y) = 0.



Probability: Bayes theorem

P(X,Y)=P(Y,X)= P(X | Y) P(Y) = P(Y| X) P(X)

While this is an innocent-looking formula, it is the source of heated
debates in science.

The importance of this theorem comes from the interpretation given
to this formula.

E.g., if we call X = model, Y = data.



Probability: Bayes theorem

P(X |Y)P(Y) =P(Y| X) P(X)

X =model; Y= data

P(Y | X) is the probability of the data given the model = Likelihood
P(X | Y)is the probability of the model given the data = Posterior

P (X) is the probability of the model before the experiment = Prior

P (Y) is a normalization, such that fP(X | Y) dX = 1 =Evidence



Probability

This is a conceptual revolution. For “Bayesians”, a probability
represents a degree-of-belief or plausibility: how much one thinks

that something (e.g., a model) is true, based on the evidence (i.e.,
data) at hand.

To the 19th century mathematicians this seemed too vague and
subjective an idea to be the basis of a rigorous mathematical theory.
So they redefined probability as the long-run relative frequency with
which an event occurred, given infinitely many (hypothetically)
repeated (experimental) trials. Since frequencies can be measured,
probability could then be seen as an objective tool for dealing with
random phenomena. This is the so-called “Frequentist” approach.



Probability

Bayesian theorem is more profound than just a mathematical formula,
since it provides a way to describe the way we reason.

We have a belief about something (=Prior).
We carry out an experiment to test our belief (=Likelihood).

We adjust our belief based on the result of the experiment
(=Posterior).
Bayes theorem tells us how to do this.

4. Our new belief becomes the new Prior, and we go back to 1.

P(model | data) o< P(data | model) X Prior



Probability

Probabilities are always conditional

Probability that it rains today — given that we are in Mohali
— given that it is (almost) spring
— given that it is cloudy
— given that ...
Probability to geta 6 in die — given that the die is fair
— given that the thrower is fair
— given that the table’s surface is ...
Probability to have N photons with energies between E; and E,
— given that the source is blackbody
— given that | use XMM-Newton ...



Poisson and Gauss

Two very important Probability Distribution Functions (PDF):

Poissonian distribution (x is a discrete variable):

I

P(x) = %e_“

Mean = /:EP(x)daj = U

Variance = /(x — w)?P(z)dx = u



Poisson distribution




Poisson and Gauss

Two very important Probability Distribution Functions (PDF):

Gaussian distribution (x is a continuous variable):

1 (z—p)?
P(x) = i

V2o

Mean = /:cP(a:)dx = U

Variance = /(:1: — u)*P(x)dx = o°



Probability

We always measure random variables, regardless how accurate our
instrument is.

E.g., suppose we count photons from a source that emits a constant
photon flux, collected by an instrument within a small time interval At
and a small energy interval AE. (We will ignore the effect of the
precision with which we can measure At and AFE.) Since the emission
of a photon at the source is independent of whether another photon
was already emitted, the emission process is Poissonian.

If we repeat the measurement many times, we will not (necessarily)
count the same number of photons each time. What is then the “true”
photon flux of the source?



Maximum Likelihood

Let us look at the problem of counting photons from the probabilistic
point of view.

Suppose that we have a set of N measurements of the number of
photons, {n;}, 1=1,2,..., N, counted within time intervals At. If the
distribution of n, is Poissonian, the probability of measuring n,
photons in interval ¢ given that the source emits i (@ is unknown!!)
photons is:

ng
e H

P(nilp) = £



Maximum Likelihood

The probability of getting this set of [V observations {n,}, given that
the source emits . photons, if the individual measurements are

independent, is (remember the “and” rule of probabilities):

P({ni}p) = HP i) =

This is called the Likelihood. (It is the likelihood of getting the
observed dataset given the model.)

The Principle of Maximum Likelihood (ML) states that the most likely
outcome of an experiment is the one that maximizes L.

It is equivalent (and it is usually easier) to maximize log L.



Maximum Likelihood

N

log L = Z |[—p + n; log p — log (n;!)]
i=1

And find 1 that maximizes log L:
N

dlog L/dp =" [-1+n;/u] =0

1=1

Which yields the well-known result:
| N
H = N z; n; = Ny
1=

that the average is the ML estimate of the mean.



Probability

We always measure random variables, regardless how accurate our
instrument is. Our measurements will always have an associated error.

Therefore, when we fit a model to these data, the parameters of the
model will also be random variables.
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Parameter estimation

Suppose our data is a set {y;}, 2 = 1,..., N, that represent the spectrum
of a source, i.e. the number of photons, y;, as a function of energy, E,.

What is the probability of getting this spectrum (data) given an
assumed model, P (data | model)?

As in the Poisson example, we need to know the PDF of the data given

the model. Let us assume that at each energy the data are random
variables from a Gaussian PDF around the model with errors o;.

In other words, at each £, the data are a random realization of a model
y(E; ; a), with parameters a (a is a vector of M elements a4, a, ... ay).

The likelihood of the data given the model is:



Parameter estimation

1 ly; —y(E;;a)]?

o2
7

P({y:i}ly(Ei; a)) H\/%a

i —y(Bi3a)]?
H ( ) %Zi\le [y y((72 )]
V21o;

Maximizing £ with respect to a is equivalent to minimizing

al i T Ez';az
b yﬁ )

1=1

If the errors are Gaussian (and only then!!!) Maximum Likelihood is
equivalent to minimum 2.




Parameter estimation

In reality, the X-ray spectral data are Poissonian (counting photons in
energy bins). The x? procedure is therefore not applicable.

However, if i is large the Poisson PDF tends to the Gaussian PDF. This
is the case when the source is bright and one has many counts per bin.

A common practice is to rebin the data (add together M consecutive
energy bins) if the source is weak, to approach the Gaussian regime.
This has the disadvantage of losing spectral resolution (narrow
emission/absorption lines are diluted in the continuum).

ML does not require rebinning, since it does not assume Gaussian PDF



A note on spectral binning

Optimal bin size for data binning as a function of
the number of counts per resolution element
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Parameter estimation

The % procedure has the advantage that it not only provides the best-
fitting parameters, but it also provides the goodness of the fit.

The reason is that the quantity x? follows a chi-square distribution with
n = N — M degrees of freedom.



Parameter estimation

P(x* n) |

0.40

0.20

n = number of degrees of freedom




Parameter estimation

The % procedure has the advantage that it not only provides the best-
fitting parameters, but it also provides the goodness of the fit.

The reason is that the quantity x? follows a chi-square distribution with
N — M degrees of freedom.

The expected value of the chi-square distribution is N — M, and the
variance is 2 (N — M).



Parameter estimation

The likelihood gives the probability of getting the data given a model.
But this is not what we want. We want the probability of a model
given the data we have. Recalling Bayes theorem, the posterior is:

Ply(Ega)[{y:)] < £ [y} | y(Eisa)] X Ply(Eg;a))
which is what we in reality have to maximize.

If we do not have any a priori information about the model (the
parameters of the model), we can choose a uniform prior over a large
enough range such that the relevant part of the likelihood is well
within the range of the prior, and hence the posterior is simply
proportional to the likelihood.



Parameter estimation

prob(D |A,,B.I)+




Confidence range

The posterior probability is all we need. From the posterior we can in
principle find the best-fitting value of the parameters, and also the
confidence range. The confidence range is the smallest interval of the

posterior around the maximum that contains a given fraction (e.g.,
68% or 90%) of the posterior.

A

prob(X |{datal,l)

X, (X) X, X



Confidence range

It is more common, however, to give the best-fitting value and the
error (to a certain confidence level) of that best-fitting value. If the

posterior PDF is asymmetric, it is customary to give separately the
positive and negative errors.

prob(X |{datal,l)

. > X
, (X) X, X



Confidence range

The posterior probability may be multi-peaked, with several of the
peaks being more or less equally high (probable). This brings up the
problem of how to quote the best-fitting value and the error (notice
that the posterior PDF provides the right information!).

A

prob(X |{data},l)

-10 0 10 20 30 40



Confidence range

In this case, should one report X =0 £ 10? Notice that X =0 has zero
probability according to the posterior PDF!

Either give the full PDF, or report “X =-10+t1o0or X =10+ 1"

A

prob(X |{data},l)

-10 0 10 20 30 40



2 — fit: Watch-out notes

If you decide to minimize the ¥?, consider the following:

You have to find a model and parameters that make x? approximately
equal to the number of degrees of freedom, n (reduced x? ~ 1, where

reduced x? is x?/n).

Against your intuition, a fit that yields a x? close to 0 is worse than a fit
with x? ~ 1.

Do not try and keep adding parameters to reach 2 =0 !!!!



........

.........







1 1 1 1




2 — fit: Watch-out notes

Given the data, y,, and the model at the same energy channels as the
data, y (£;;a), we want to minimize:

N

2 [yi — y(E@, a’)]Q
X = Z 2
i—1 i

where o, = y (E;;a)"? (expected error).

However, since we neither know the model (that is what we are

after) nor yet fitted the data, we do not know what is the expected
value, y (E;;a), and hence we cannot calculate the expected error.

One normally takes the observed error, o; gpeerved = ¥i/2, @s a proxy to
the expected error.



2 — fit: Watch-out notes

Notice that this error is “biased” (it is not a proper representation of
the true error).

For instance, if one channel happens to have fewer photons than
expected, the error will also be smaller than expected, and that
channel will have a strong influence in the value of x2. In the
extreme, if a channel has 0 counts, x? goes to infinity!

Xspec offers a few solutions (see command “weight”).



2 — fit: Watch-out notes
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Hypothesis testing

Once you have fitted your model, you want to know whether there is
another model that would fit the data better.

For instance, what if | add a line to my model? Does the fit improve?
Is the line significant? Should | add another line to improve the fit?
When should | stop?

Or | fitted a power law to my spectrum. Do | get a better fit if |
include a high-energy cut off?

This is a very common problem in science, and it is one that has been
explored a lot. One can approach this from the Bayesian point of
view, and compare the posteriors of the two models, but a
guantitative assessment of the improvement is still missing, and is a
topic of continuous studies.



Hypothesis testing

Under some circumstances, there is a “frequentist” approach, the so-
called F-test (developed by Fisher) that helps answer some of these

guestions.

Adding new parameters to the model (hopefully!) improves the fit at
the expense of reducing the number of degrees of freedom
(remember that number of degrees of freedom is the number of
data points minus the number of parameters).

The idea is to compare the ¥? and the number of degrees of freedom
of the two fits, e.g. one with and the other without the line.

A combination of these 4 numbers follows a specific distribution, the
F distribution for n, and n, degrees of freedom, where n, and n, are,
respectively, the number of degrees of freedom of each fit.



Hypothesis testing

Xspec has a command called “ftest” that gives you the probability
that the improvement in the fit happened only by chance.

If the probability is low, one can conclude that it is unlikely (but never
certain!) that the improvement is not significant or, in other words, it

is quite likely that the addition of the extra parameters improves the
fit significantly.

Bear in mind that two conditions must be met in order to be able to
apply the F-test (see Protassov et al. 2002 ApJ 571, 545):

(1) The models should be nested.

(2) The new model should not be equal to the old model at an
extreme value of one of the parameters.



Hypothesis testing

(1) The new model becomes the old for some value of one of the
parameters. For example:

yi(r)=a+bx

y,(x) =a+bzx+ca?

are nested because y,(x) becomes y,(x) for c = 0.
y1(x) = blackbody

y>(x) = powerlaw

are not; you cannot convert a power law into a blackbody for any
value of the power-law normalization or power-law index.



Hypothesis testing

(2) The new model must not become the old one at an extreme value
of one parameter. For example:

yl(fl?)=a+bx

y2($)=a+baz+ca:2

is okay if ¢ can be either positive or negative because c=0 is not an
extreme value of ¢, but:

y,(x) = powerlaw

y,(x) = powerlaw + A x gaussian

is not okay if this is an emission line (A > 0), since y,(x) becomes
y1(x) for the extreme value A = 0.



Hypothesis testing

If your case does not satisfy (1) and (2), you cannot be sure that the
F-test gives you the right probability (it may, but it may not).

In that case you should use Montecarlo simulations.
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Now, fit and enjoy!
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F'and k1, from plots like this:
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These are the best-fitting parameters to the spectra:
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These (the green points in this plot) are

(finally!) the data:
A. True
B. False



These are observed fluxes corrected by the
sensitivity of the instrument as a function of energy
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These (the green points in this plot) are

(finally!) the data:

A. True
B. False



This is the observed flux, without correction
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The green points are (finally, finally!) the data:
A. True
B. False



This is the observed flux, without correction
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The green points are (finally, finally!) the data:
A. True
B. False



We do not measure the flux; we count photons, and must
deduce their energy from instrumental calibration

Cu Ko

Ezcape
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Count
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X-ravensray (keV

Detector response to incident quasi-monochromatic photons with
E ~ 8.03 keV



We do not measure the flux; we count photons, and must
deduce their energy from instrumental calibration

Count

pile up

10 15

Are these (finally, finally, finally!) the data?
No! We in fact measure a charge on a detector, and must deduce how
many photons, and of which energy, produced that charge



