

Diego Altamirano THE ROYAL SOCIETY

What do I do first?

What do I do first?

Lots of numbers?

LC? source vs bkge?

Energy Spectra?

Image?

Power Spectra?

What is the first thing you do?

Chandra 3-Color

Rampaging
Supernova
Remnant N63A

Now what? We take out this Flare because it bothers, right?

Courtesy of Ozan Toyran

For a Light curve, what would you do with a light curve light this?

If it is obvious that you would not consider that
 A period of Fear == one of Exciment nor
 One of Euphoria == one of Depression

Then you should definitely apply the same logic when you analyze your data!

Time

Time

DATA Binning

Binning Options

Combined pixols on tho GCD Chip

None										
$\times 2$										
(4 pixels = 1)										
$\begin{gathered} 3 \times 3 \\ (9 \text { pixels }=1) \end{gathered}$										
4×4										
(16 pixels = 1)										

DATA Binning

Always make a light curve first! (and if necessary, use different energy bands and binning factor!!)

Time Binning!

How do things change?

Time bin $=0.01$ seconds

Time bin $=0.01$ seconds

Energy selection...

changes my light curve?

Energy 1 - 3 (in channels)

Energy 1 - 3 (in channels)

Coming back to the talk....

Good Time Interval

Good Time Interval

263742929.0000000 263743026.0000000 263748625.0000000
263743009.0000000 263745778.0000000
263751841.0000000

Good Time Interval

263742929.0000000	263743009.0000000			
263743026.0000000	263745778.0000000			
263748625.0000000	263751841.0000000	- Offset $=$	0	80
:---	:---			
97	2849			
5696	8912			

Good Time Interval

There is no standard tool that you can use for every problem!!

X-ray colors -> helping tracing variability

X-ray colors -> helping tracing variability

X-ray colors -> helping tracing

 variability1

- Color 1 = B/A
- Color 2 = D/C
- Intensity $=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$

Folding (or similar techniques)!

Folding (or similar techniques)!

In many cases, we just can't do the selections by eye, or by using spectral colors....

There can be much more variability than that you can see with the naked eye....

In many cases, we just can't do the selections by eye, or by using spectral colors....

There can be much more variability than that you can see with the naked eye....

Statistics some times kill us, but Sir Fourier comes to our help!

https://www.youtube.com/watch?v=SpzNQOOBeRg

> NTRODUCTION -TOFOURIER SERIES
http://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif

https://www.youtube.com/watch?v=vvr9AMWEU-c

System and methods for recognizing sound and music signals in high noise and distortion US 6990453 B2

ABSTRACT

A method for recognizing an audio sample locates an audio file that most closely matches the audio sample from a database indexing a large set of original
recordings. Each indexed audio file is represented in the database index by a set

Publication number
Publication type
Application number
Publication date
Filing date
Priority date ?
Fee status?
Also published as
Inventors

US6990453 B2
Grant
US 09/839,476
Jan 24, 2006
Apr 20, 2001
Jul 31, 2000
Paid
CN1592906A, 18 More »
Avery Li-Chun Wang, Julius O. Smith, III

Number of Trials to First Success

Informally, the probability of an event is the average number of times the event occurs in a sequence of trials. Another way of looking at that is to ask for an average number of trials before the first occurrence of the event. This could be formalized in terms of mathematical expectation.

Dynamical Power spectrum

(a)

$$
\frac{4}{5}
$$

Dynamical Power spectrum --> Gives the orbital period!!

Phase / Time Lags

Primary radiation

Gliknou M., 2010, It Be lon IT., ed., Lectire Noter
X-RayEnfigitom Black-Hole Blarles. Spilig

Phase ... Phase ... Phase

$$
y(t)=A \sin (2 \pi f t+\varphi)=A \sin (\omega t+\varphi)
$$

where:

- A, the amplitude, is the peak deviation of the function from zero.
- f, the ordinary frequency, is the number of oscillations (cycles) that occur each second of time.
- $\omega=2 \pi f$, the angular frequency, is the rate of change of the

The graphs of the sine and cosine functions are sinusoids of different phases. function argument in units of radians per second

- φ, the phase, specifies (in radians) where in its cycle the oscillation is at $t=0$.
- When φ is non-zero, the entire waveform appears to be shifted in time by the amount φ / ω seconds. A negative value represents a delay, and a positive value represents an advance.

Phase ... Phase ... Phase

Phase / Time Lags

Phase shift $=90$ degrees A is ahead of B (A "leads" B)

Phase shift $=90$ degrees B is ahead of A (B "leads" A)

Phase shift = 180 degrees A and B waveforms are mirror-images of each other

Phase shift $=0$ degrees
A and B waveforms are in perfect step with each other

Phase / Time Lags

Primary radiation

Gliknou M., 2010, It Be lon IT., ed., Lectire Noter
X-RayEnfigitom Black-Hole Blarles. Spilig

wWW.nr.com

NUMERICAL RECIPES'

The Art of Scientific Computing

Third Edition

Click on any image below to display in the right column more information about the product or service.

Numerical Recipes Home Pa

We are nr.com, Numerical Recipes Software. We are one Web, dating back to 1993 when there were only about 25,0 about $200,000,000$. In partnership with Cambridge Univers series of books on scientific computing and related software

fLike $\{1.4 \mathrm{k}$ We're now on Facebook as Numerical Recip you might get a free NR3 ebook lifetime subscription! (This Facebook-friendly.) Check regularly at this link to see if you

Numerical Recipes in Java ${ }^{\mathrm{TM}!}$ High-quality translations of o by a Numerical Recipes user. They are available to all other information.

You can call Numerical Recipes routines (along with any oth examples is here. A free interface file is here. This is an alph

