
Integers, Polynomials, Matrices
MTH302 Assignment 1 5 August, 2016

Solutions to Assignment 1

1. Show that 0 = 1 in a ring if and only if the ring consists of just one element 0 with
0 + 0 = 0 and 0 · 0 = 0.

2. In a ring, check that a.0 = 0 = 0.a for any element a of the ring.

3. Check that the axioms of a ring are satisfied by Z/n. (Hint: One can always take
remainder “at the end.”)

Solution: Given integers a and b we perform division by n

a = cn + d and b = en + f

with d and f non-negative integers less than n.

If (e + f) = gn + h is the division of e + f by n, then

a + b = (c + d)n + e + f = (c + d + g)n + h

is the division of a + b by n. Hence, whether we take remainder modulo n before
addition or after addition, the result is the same.

Similarly, if ef = kn + m is the division of ef by n, then

ab = (cen + cf + ed)n + ef = (cen + cf + ed + k)n + m

is the division of ab by n. Hence, whether we take the remainder modulo n before
multiplication of after multiplication, the result is the same.

Now the required identities for associative laws, distributive laws and identity hold
in integers before taking remainder modulo n and so they will also hold after taking
remainder modulo n. For example, given a, b and c integers, we have a(b+c) = ab+ac
so we also have (a(b+ c))%n = (ab+ bc)%n. Now, we apply the above results to get

(a(b + c))%n = (a%n)((b + c)%n) = (a%n)((b%n) + (c%n))

similarly,

(ab + ac))%n = (((ab)%n) + ((ac)%n)) = ((a%n)(b%n) + (a%n)(c%n))

This shows that

(a%n)((b%n) + (c%n)) = ((a%n)(b%n) + (a%n)(c%n))

which is the distributive law for Z/n.
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4. Check that the program below calculates the greatest common divisor of a and b. (Hint:
We only need to check that the greatest common divisor is invariant under the above
substitutions.)

def gcd(a,b):

a, b = abs(a), abs(b)

if b > a:

a, b = b, a

while b != 0:

a, b = b, a%b

return a

Solution: We note that the following statments hold for the greatest common divisor
of two integers a and b (we use gcd(a, b) for this operation:

1. gcd(a, b) = gcd(b, a)

2. gcd(a, b) = gcd(|a|, b)

3. gcd(a, b) = gcd(a%b, b)

4. gcd(a, 0) = a.

It follows that at each stage of the program, we are calculating the same number.
As a result of the if statment, we have a ≥ b and the result of the while loop keeps
this inequality unchanged. At the same time, in the while loop, the numbers are
becoming smaller since a%b < b as long as b 6= 0. Thus, the calculation must stop
with b = 0.

5. Given three numbers a, b and c, we can calculate d = gcd(gcd(a, b), c). Check that d is
the greatest common divisor of a, b and c.

Solution: If d is a divisor of a, b and c, then it is also a divisor of gcd(a, b). Con-
versely, if d is a divisor of gcd(a, b) and of c, then d also divides a and b. We therefore
have equality of the two sets

{d : d ≥ 0, d|a, d|b, d|c}{d : d ≥ 0, d|gcd(a, b), d|c}

Since gcd(gcd(a, b), c) is the maximum of the set on the right and gcd(a, b, c) is the
maximum of the set on the left, these two numbers are equal.
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6. If the greatest common divisor of S is d then show that any multiple of d can be written
as a finite additive combination of multiples of elements of S.

Solution: First of all, we note that if S contains T , then the greatest common
divisor S is bounded above by the greatest common divisor of T . Since the greatest
common divisor is a non-negative number, we see that there is a finite set T such
that the greatest common divisor of T is the same as the greatest common divisor
of S.

Next, we note that it is enough to write the greatest common divisor of T as an
additive combination of elements of T ; the case of a multiple follows by multiplying
the additive combination obtained and an application of the distributive law.

Suppose we prove that for any integers a and b, for suitable integers A and B, we
have gcd(a, b) = aA+bB. We can write T = T!∪{c} and apply this to gcd(gcd(T1), c)
to get (using the previous exercise inductively!)

gcd(T ) = gcd(gcd(T1), c) = gcd(T1)D + cC

for suitable integers D and C. Since we can assume that T1 is a smaller finite set than
T , we can assume the result for T1 and write gcd(T1) as a combination of elements
of T1. The result would then follow. Thus, we are reduced to the case where T has
two elements a and b.

Now we use the program that calculates gcd(a, b) and note that a%b = a− b · (a//b)
is an additive combination of a and b and so is b = a · 0 + b · 1. Thus, at each stage
the new pair consists of additive combinations of the old pair. Moreover, if e is an
additive combination of c and d where c and d are additive combinations of a and b,
then e is an additive combination of a and b. Since the final answer is one element
of the pair, we see that gcd(a, b) is an additive combination of a and b.

7. Consider the set R of real numbers of the form a+ b
√

5 where a and b are integers with
the usual operations of addition and multiplication of real numbers. Check that R as
defined above is a ring.

Solution: Since the collection of real numbers is a ring, we only need to check that
R is closed under addition and multiplication, and that it contains 0 and 1.

1. We have 0 = 0 + 0 ·
√

5 and 1 = 1 + 0
√

5.

2. We have
a + b

√
5 + c + d

√
5 = (a + c) + (b + d)

√
5
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3. We have
(a + b

√
5)(c + d

√
5) = (ac + 5bd) + (ad + bc)

√
5

This completes the check.

8. Show that (mZ) · (nZ) = (mn) · Z and (mZ) + (nZ) = gcd(m,n)Z.

Solution: We note that (ma)(nb) = (mn)(ab) by associativity and commutativity
of multiplication. Hence, the left-hand side of the first identity is contained the right-
hand side of the first identity. Conversely, (mn)a = (ma)(n·1) so that the right-hand
side is contained in the left-hand side as well. This proves the first identity.

We have seen earlier that every multiple of the gcd of a pair of numbers m and n
is an additive combination of m and n. This proves that the right-hand side of the
second identity is contained in the left-hand side of this identity. Conversely ma+nb
is divisible by any divisor of m and n, hence it is a multiple of gcd(m,n).; this proves
that the left-hand side is contained in the right-hand side.

9. More generally, for any ring R and ideals I and J in R, show that I · J and I + J are
ideals in R.

Solution: Recall that I + J consists of elements of the form a+ b with a in I and b
in J . By the associativity and commutativity of addition, we have (a+ b)+(c+d) =
(a + c) + (b + d). Hence, if a and c lie in I and b and d lie in J , then the right hand
side lies in I + J . This shows that I + J is closed under addition. Similarly, the
distributive law says that c · (a + b) = (c · a) + (c · b). Now, if a lies in I, which is an
ideal, then so does c · a. Similarly, J is an ideal and b lies in J means that c · b lies
in J . Hence, the right-hand side lies in I + J showing that I + J is closed under left
multiplication by c in R. A similar argument can be used for right multiplication.
(Note that if I and J are only closed under left multiplication by elements of R, then
the same applies to I + J .)

Recall that I · J consists of finite sums of the form
∑

i ai · bi where ai are in I and bi
are in J . This is clearly closed under addition. If c is any element of R, then

c · (
∑
i

ai · bi) =
∑
i

c · (ai · bi) =
∑
i

(c · ai) · bi

where we have applied the distributive law and the associative law. Now I is an ideal,
so ai lies in I implies that c · ai lies in I. This shows that the right-hand side lies in
I · J . Similarly, on multiplication by c on the right, we use the fact that bi · c lies in
J when bi lies in J . (Note that we only use that I is closed under left multiplication
ahd J is closed under right multiplication!)
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10. Given a ring R, we can define a set map r : Z → R by defining the image of 0 as 0 (in
R), the image of a positive integer n is the sum of n copies of 1 (in R), the image of a
negative integer −n is the sum of n copies of −1 (in R).

Check that the above map r has the property that r(m+n) = r(m)+r(n) and r(m ·n) =
r(m) · r(n).

Solution: If m is positive and n = −k is negative, then there are three cases to
consider m > k and m = k and m < k. In the first case, we have m+n = m−k > 0.
In this case r(m + n) is a sum of m− k copies of 1. On the other hand r(m) is the
sum of m copies of 1 in R and r(n) is a sum of k copies of −1 in R. Since addition
is commutative and associative in R, we can re-group this into m− k copies of 1 in
R, and k copies of pairs of 1 and −1 in R. As −1 is the additive inverse of 1 in R,
the latter pairs add up to 0 in R. Making use of the additive identity property of
R we see that the result is just the sum of m− k copies of 1 in R as required. The
remaining cases are similar.

The remaining cases for addition are similar to the one above.

The case of multiplication can be done in a similar fashion using the distributive law
and the associative law for addition, together with the fact that 1 is the additive
identity. However, we need one further ingredient as follows.

1+(−1) = 0 = (−1)·0 = (−1)·((−1)+1) = (−1)·(−1)+(−1)·1 = (−1)·(−1)+(−1)

Adding 1 to both sides (“on the right”!), we see that

1 = 1 + 0 =

1 + ((−1) + 1) = (1 + (−1)) + 1 = ((−1) · (−1) + (−1)) + 1 =

(−1) · (−1) + ((−1) + 1) = (−1) · (−1) + 0 = (−1) · (−1)

In other words, we derive the (“obvious”) identity 1 = (−1) · (−1). This is required
in the proof that r(mn) = r(m)r(n) when m and n are negative.

11. If f : R → S is a homomorphism of rings then define the set I to consist of elements a
such that f(a) = 0. Check that I is an ideal.

Solution: If a and b lie in I and c lies in R, then we have

f(a + b) = f(a) + f(b) = 0 + 0 = 0 and

f(c · a) = f(c) · f(a) = f(c) · 0 = 0 and

f(a · c) = f(a) · f(c) = 0 · f(c) = 0

This shows that a + b, c · a and a · c lie in I. Hence, I is an ideal.
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12. What are the elements a and a′ of R such that a + I = a′ + I?

Solution: Given that a + I = a′ + I, we see that a′ is an element of the right-hand
side. Hence, it is an element of the left-hand side and so a′ = a + b for some b in I.
It follows that a′−a = b lies in I. So the condition a+ I = a′ + I can be also written
as (a′ − a) ∈ I.

13. Check that R/I with the operations ⊕ and � as addition and multiplication forms a
ring with 0 + I and 1 + I as additive and multiplicative identity respectively.

Solution: One only needs that (a+ I)⊕ (b+ I) is (a+ b) + I and (a+ I)� (b+ I) =
(a · b) + I. Since, addition and multiplication satisfy the necessary axioms in R, the
same axioms follow automatically! (See the proof for the ring properties for Z/n.)

14. Starred Look for other examples of rings that you have already learned about so far.

Solution: Various collections of functions are rings. For example, the ring of con-
tinuous functions, the ring of differentiable functions and so on.
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