Solutions to Assignment 1

1. Show that $0=1$ in a ring if and only if the ring consists of just one element 0 with $0+0=0$ and $0 \cdot 0=0$.
2. In a ring, check that $a .0=0=0 . a$ for any element a of the ring.
3. Check that the axioms of a ring are satisfied by \mathbb{Z} / n. (Hint: One can always take remainder "at the end.")

Solution: Given integers a and b we perform division by n

$$
a=c n+d \text { and } b=e n+f
$$

with d and f non-negative integers less than n.
If $(e+f)=g n+h$ is the division of $e+f$ by n, then

$$
a+b=(c+d) n+e+f=(c+d+g) n+h
$$

is the division of $a+b$ by n. Hence, whether we take remainder modulo n before addition or after addition, the result is the same.
Similarly, if ef $=k n+m$ is the division of ef by n, then

$$
a b=(c e n+c f+e d) n+e f=(c e n+c f+e d+k) n+m
$$

is the division of $a b$ by n. Hence, whether we take the remainder modulo n before multiplication of after multiplication, the result is the same.
Now the required identities for associative laws, distributive laws and identity hold in integers before taking remainder modulo n and so they will also hold after taking remainder modulo n. For example, given a, b and c integers, we have $a(b+c)=a b+a c$ so we also have $(a(b+c)) \% n=(a b+b c) \% n$. Now, we apply the above results to get

$$
(a(b+c)) \% n=(a \% n)((b+c) \% n)=(a \% n)((b \% n)+(c \% n))
$$

similarly,

$$
(a b+a c)) \% n=(((a b) \% n)+((a c) \% n))=((a \% n)(b \% n)+(a \% n)(c \% n))
$$

This shows that

$$
(a \% n)((b \% n)+(c \% n))=((a \% n)(b \% n)+(a \% n)(c \% n))
$$

which is the distributive law for \mathbb{Z} / n.
4. Check that the program below calculates the greatest common divisor of a and b. (Hint: We only need to check that the greatest common divisor is invariant under the above substitutions.)

```
def gcd(a,b):
    a, b = abs(a), abs(b)
    if b > a:
        a, b = b, a
    while b != 0:
        a, b = b, a%b
    return a
```

Solution: We note that the following statments hold for the greatest common divisor of two integers a and b (we use $\operatorname{gcd}(a, b)$ for this operation:

1. $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$
2. $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|, b)$
3. $\operatorname{gcd}(a, b)=\operatorname{gcd}(a \% b, b)$
4. $\operatorname{gcd}(a, 0)=a$.

It follows that at each stage of the program, we are calculating the same number. As a result of the if statment, we have $a \geq b$ and the result of the while loop keeps this inequality unchanged. At the same time, in the while loop, the numbers are becoming smaller since $a \% b<b$ as long as $b \neq 0$. Thus, the calculation must stop with $b=0$.
5. Given three numbers a, b and c, we can calculate $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Check that d is the greatest common divisor of a, b and c.

Solution: If d is a divisor of a, b and c, then it is also a divisor of $\operatorname{gcd}(a, b)$. Conversely, if d is a divisor of $\operatorname{gcd}(a, b)$ and of c, then d also divides a and b. We therefore have equality of the two sets

$$
\{d: d \geq 0, d|a, d| b, d \mid c\}\{d: d \geq 0, d|\operatorname{gcd}(a, b), d| c\}
$$

Since $\operatorname{gcd}(\operatorname{gcd}(a, b), c)$ is the maximum of the set on the right and $\operatorname{gcd}(a, b, c)$ is the maximum of the set on the left, these two numbers are equal.
6. If the greatest common divisor of S is d then show that any multiple of d can be written as a finite additive combination of multiples of elements of S.

Solution: First of all, we note that if S contains T, then the greatest common divisor S is bounded above by the greatest common divisor of T. Since the greatest common divisor is a non-negative number, we see that there is a finite set T such that the greatest common divisor of T is the same as the greatest common divisor of S.

Next, we note that it is enough to write the greatest common divisor of T as an additive combination of elements of T; the case of a multiple follows by multiplying the additive combination obtained and an application of the distributive law.

Suppose we prove that for any integers a and b, for suitable integers A and B, we have $\operatorname{gcd}(a, b)=a A+b B$. We can write $T=T!\cup\{c\}$ and apply this to $\operatorname{gcd}\left(\operatorname{gcd}\left(T_{1}\right), c\right)$ to get (using the previous exercise inductively!)

$$
\operatorname{gcd}(T)=\operatorname{gcd}\left(\operatorname{gcd}\left(T_{1}\right), c\right)=\operatorname{gcd}\left(T_{1}\right) D+c C
$$

for suitable integers D and C. Since we can assume that T_{1} is a smaller finite set than T, we can assume the result for T_{1} and write $\operatorname{gcd}\left(T_{1}\right)$ as a combination of elements of T_{1}. The result would then follow. Thus, we are reduced to the case where T has two elements a and b.
Now we use the program that calculates $\operatorname{gcd}(a, b)$ and note that $a \% b=a-b \cdot(a / / b)$ is an additive combination of a and b and so is $b=a \cdot 0+b \cdot 1$. Thus, at each stage the new pair consists of additive combinations of the old pair. Moreover, if e is an additive combination of c and d where c and d are additive combinations of a and b, then e is an additive combination of a and b. Since the final answer is one element of the pair, we see that $\operatorname{gcd}(a, b)$ is an additive combination of a and b.
7. Consider the set R of real numbers of the form $a+b \sqrt{5}$ where a and b are integers with the usual operations of addition and multiplication of real numbers. Check that R as defined above is a ring.

Solution: Since the collection of real numbers is a ring, we only need to check that R is closed under addition and multiplication, and that it contains 0 and 1.

1. We have $0=0+0 \cdot \sqrt{5}$ and $1=1+0 \sqrt{5}$.
2. We have

$$
a+b \sqrt{5}+c+d \sqrt{5}=(a+c)+(b+d) \sqrt{5}
$$

3. We have

$$
(a+b \sqrt{5})(c+d \sqrt{5})=(a c+5 b d)+(a d+b c) \sqrt{5}
$$

This completes the check.
8. Show that $(m \mathbb{Z}) \cdot(n \mathbb{Z})=(m n) \cdot \mathbb{Z}$ and $(m \mathbb{Z})+(n \mathbb{Z})=\operatorname{gcd}(m, n) \mathbb{Z}$.

Solution: We note that $(m a)(n b)=(m n)(a b)$ by associativity and commutativity of multiplication. Hence, the left-hand side of the first identity is contained the righthand side of the first identity. Conversely, $(m n) a=(m a)(n \cdot 1)$ so that the right-hand side is contained in the left-hand side as well. This proves the first identity.
We have seen earlier that every multiple of the gcd of a pair of numbers m and n is an additive combination of m and n. This proves that the right-hand side of the second identity is contained in the left-hand side of this identity. Conversely ma+nb is divisible by any divisor of m and n, hence it is a multiple of $\operatorname{gcd}(m, n)$.; this proves that the left-hand side is contained in the right-hand side.
9. More generally, for any ring R and ideals I and J in R, show that $I \cdot J$ and $I+J$ are ideals in R.

Solution: Recall that $I+J$ consists of elements of the form $a+b$ with a in I and b in J. By the associativity and commutativity of addition, we have $(a+b)+(c+d)=$ $(a+c)+(b+d)$. Hence, if a and c lie in I and b and d lie in J, then the right hand side lies in $I+J$. This shows that $I+J$ is closed under addition. Similarly, the distributive law says that $c \cdot(a+b)=(c \cdot a)+(c \cdot b)$. Now, if a lies in I, which is an ideal, then so does $c \cdot a$. Similarly, J is an ideal and b lies in J means that $c \cdot b$ lies in J. Hence, the right-hand side lies in $I+J$ showing that $I+J$ is closed under left multiplication by c in R. A similar argument can be used for right multiplication. (Note that if I and J are only closed under left multiplication by elements of R, then the same applies to $I+J$.)
Recall that $I \cdot J$ consists of finite sums of the form $\sum_{i} a_{i} \cdot b_{i}$ where a_{i} are in I and b_{i} are in J. This is clearly closed under addition. If c is any element of R, then

$$
c \cdot\left(\sum_{i} a_{i} \cdot b_{i}\right)=\sum_{i} c \cdot\left(a_{i} \cdot b_{i}\right)=\sum_{i}\left(c \cdot a_{i}\right) \cdot b_{i}
$$

where we have applied the distributive law and the associative law. Now I is an ideal, so a_{i} lies in I implies that $c \cdot a_{i}$ lies in I. This shows that the right-hand side lies in $I \cdot J$. Similarly, on multiplication by c on the right, we use the fact that $b_{i} \cdot c$ lies in J when b_{i} lies in J. (Note that we only use that I is closed under left multiplication ahd J is closed under right multiplication!)
10. Given a ring R, we can define a set map $r: \mathbb{Z} \rightarrow R$ by defining the image of 0 as 0 (in R), the image of a positive integer n is the sum of n copies of 1 (in R), the image of a negative integer $-n$ is the sum of n copies of -1 (in R).
Check that the above map r has the property that $r(m+n)=r(m)+r(n)$ and $r(m \cdot n)=$ $r(m) \cdot r(n)$.

Solution: If m is positive and $n=-k$ is negative, then there are three cases to consider $m>k$ and $m=k$ and $m<k$. In the first case, we have $m+n=m-k>0$. In this case $r(m+n)$ is a sum of $m-k$ copies of 1 . On the other hand $r(m)$ is the sum of m copies of 1 in R and $r(n)$ is a sum of k copies of -1 in R. Since addition is commutative and associative in R, we can re-group this into $m-k$ copies of 1 in R, and k copies of pairs of 1 and -1 in R. As -1 is the additive inverse of 1 in R, the latter pairs add up to 0 in R. Making use of the additive identity property of R we see that the result is just the sum of $m-k$ copies of 1 in R as required. The remaining cases are similar.
The remaining cases for addition are similar to the one above.
The case of multiplication can be done in a similar fashion using the distributive law and the associative law for addition, together with the fact that 1 is the additive identity. However, we need one further ingredient as follows.
$1+(-1)=0=(-1) \cdot 0=(-1) \cdot((-1)+1)=(-1) \cdot(-1)+(-1) \cdot 1=(-1) \cdot(-1)+(-1)$
Adding 1 to both sides ("on the right"!), we see that

$$
\begin{aligned}
& 1=1+0= \\
& \qquad \begin{aligned}
1+((-1)+1) & =(1+(-1))+1=((-1) \cdot(-1)+(-1))+1= \\
& (-1) \cdot(-1)+((-1)+1)=(-1) \cdot(-1)+0=(-1) \cdot(-1)
\end{aligned}
\end{aligned}
$$

In other words, we derive the ("obvious") identity $1=(-1) \cdot(-1)$. This is required in the proof that $r(m n)=r(m) r(n)$ when m and n are negative.
11. If $f: R \rightarrow S$ is a homomorphism of rings then define the set I to consist of elements a such that $f(a)=0$. Check that I is an ideal.

Solution: If a and b lie in I and c lies in R, then we have

$$
\begin{aligned}
& f(a+b)=f(a)+f(b)=0+0=0 \text { and } \\
& \qquad \begin{aligned}
& f(c \cdot a)=f(c) \cdot f(a)=f(c) \cdot 0=0 \text { and } \\
& f(a \cdot c)=f(a) \cdot f(c)=0 \cdot f(c)=0
\end{aligned}
\end{aligned}
$$

This shows that $a+b, c \cdot a$ and $a \cdot c$ lie in I. Hence, I is an ideal.
12. What are the elements a and a^{\prime} of R such that $a+I=a^{\prime}+I$?

Solution: Given that $a+I=a^{\prime}+I$, we see that a^{\prime} is an element of the right-hand side. Hence, it is an element of the left-hand side and so $a^{\prime}=a+b$ for some b in I. It follows that $a^{\prime}-a=b$ lies in I. So the condition $a+I=a^{\prime}+I$ can be also written as $\left(a^{\prime}-a\right) \in I$.
13. Check that R / I with the operations \oplus and \odot as addition and multiplication forms a ring with $0+I$ and $1+I$ as additive and multiplicative identity respectively.

Solution: One only needs that $(a+I) \oplus(b+I)$ is $(a+b)+I$ and $(a+I) \odot(b+I)=$ $(a \cdot b)+I$. Since, addition and multiplication satisfy the necessary axioms in R, the same axioms follow automatically! (See the proof for the ring properties for \mathbb{Z} / n.)
14. Starred Look for other examples of rings that you have already learned about so far.

Solution: Various collections of functions are rings. For example, the ring of continuous functions, the ring of differentiable functions and so on.

