

Differential Equations for Scientists (IDC205)¹ Academic Session 2016-17

Problem Sheet 03

Due on : August 26, 2016

- 1. Find an integrating factor for the following differential forms
 - (a) y dx x dy.
 - (b) $(1 + yxe^x)y \, dx x \, dy$.
 - (c) (1 + xy)y dx + (1 xy)x dy.

2. Find a family of integral curves for the equation $\frac{d}{dx}(y) = \frac{y}{x} + \frac{x^2 + y^2}{x^2}$.

3. Suppose $\mu(x)$ is an integrating factor for M(x, y) dx + N(x, y) dy; *i.e.* the integrating factor is independent of *y*. Show that

$$\mu(x) = \exp\left(\int p(x) \, dx\right)$$

where $p(x) = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$.

- 4. Consider the linear differential equation $\frac{d}{dx}(y) + P(x)y = 0$. Show that if f_1, f_2, \dots, f_n are solutions of this equation then so is $\sum_{i=1}^n \lambda_i f_i$, where λ_i s are arbitrary real numbers. Does the same statement hold for the differential equation $\frac{d}{dx}(y) + P(x)y = Q(x)$, where Q is an arbitrary function of x? Justify.
- 5. Solve the following equation: $x\frac{d}{dx}(y) + (x+1)y = x^3$.

¹An interdisciplinary core elective course taught by Amit Kulshrestha during the odd semester of academic session 2016-17 at IISER Mohali.