Special types of elements in rings

Now that we have a number of different examples of rings, we can look for properties of elements.

Nilpotent Elements

An element of a ring R is called nilpotent if some power of it is 0 . Note that 0 is a nilotent element!

Exercise: Check that

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

is a nilpotent matrix.
Exercise: What are the nilpotent elements in the ring $\mathbb{Z} / 24$?
A (square) matrix is called upper triangular if all elements on and below the diagonal are 0 .

Exercise: Check that an upper triangular matrix is nilpotent.
Of course, a similar statement holds for lower triangular matrices, which have all entries on or above the diagonal as zero.

Exercise: (Starred) Give an example of a matrix which is not upper or lower triangular and yet is nilpotent.

Idempotent Elements

An element p of a ring is called idempotent if $p^{2}=p \cdot p=p$. Note that 1 is always an idempotent element!

Exercise: Check that

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is an idempotent matrix.
Exercise: Are there any idempotent elements in $\mathbb{Z} / 6$ other than 1 ?
Exercise: If p is an idempotent element, then check that $1-p$ is also an idempotent element.

Exercise: If p is an idempotent element of a ring R, then check that the set $p R p=\{p a p \mid a \in R\}$ is closed under addition and multiplication and that p acts as multiplicative identity on $p R p$.

In this case $p R p$ is a ring. However, it is not a sub-ring of R since the identity element is not the same.

Zero divisors

An element a of a ring R is called a zero divisor if there is a non-zero element b of R so that $a \cdot b=0$ or $b \cdot a=0$. Note that every nilpotent matrix is a zero divisor by this definition-what about 0?! Sometimes, it is useful to distinguish between left zero divisors and right zero divisors.
Exercise: Check that

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is a zero divisor.
Exercise: What are the zero divisors in the ring $\mathbb{Z} / 42$?
Exercise: Give an example of a 2×2 matrix which is not nilpotent and not idempotent and yet is a zero divisor.

Exercise: Find a condition under which an element k of \mathbb{Z} / n is a zero divisor.
Exercise: (Starred) Find the condition under which a 2×2 matrix over rational numbers is a zero divisor in this ring.

Units

An element u of a ring R is called a unit if there is an element v of R for which $u \cdot v=1=v \cdot u$. Note that 1 is automatically a unit! Sometimes it is useful to talk about left units and right units.
Exercise: Check that the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ is a unit in the ring of 2×2 matrices.
Exercise: Check that 5 is a unit in the ring $\mathbb{Z} / 42$.
Exercise: Check that the product of units is also a unit.
Exercise: Give a condition on an element k of \mathbb{Z} / n so that it is a unit in this ring.

Exercise: (Starred) Give a condition on 2×2 matrices over rational numbers so that it is a unit in this ring.

Combinations of types

We can play with the inter-relations between the above conditions.
Exercise: If u is a unit and is idempotent, then check that $u=1$.
Exercise: Can there be a unit which is also a zero divisor?
Exercise: Is it possible for the sum of nilpotent elements to be a unit?
Exercise: Is it possible for the sum of units to be nilpotent?
Exercise: (Starred) Ask yourself other questions about other combinations of properties and come up with their answers!

