Rings, Ideals and Homomorphisms

1. Show that $0=1$ in a ring if and only if the ring consists of just one element 0 with $0+0=0$ and $0 \cdot 0=0$.
2. In a ring, check that $a .0=0=0 . a$ for any element a of the ring.
3. Check that the axioms of a ring are satisfied by \mathbb{Z} / n. (Hint: One can always take remainder "at the end.")
4. Check that the program below calculates the greatest common divisor of a and b. (Hint: We only need to check that the greatest common divisor is invariant under the above substitutions.)
```
def gcd(a,b):
    a, b = abs(a), abs(b)
    if b > a:
        a, b = b, a
    while b != 0:
        a, b = b, a%b
    return a
```

5. Given three numbers a, b and c, we can calculate $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Check that d is the greatest common divisor of a, b and c.
6. If the greatest common divisor of S is d then show that any multiple of d can be written as a finite additive combination of multiples of elements of S.
7. Consider the set R of real numbers of the form $a+b \sqrt{5}$ where a and b are integers with the usual operations of addition and multiplication of real numbers. Check that R as defined above is a ring.
8. Show that $(m \mathbb{Z}) \cdot(n \mathbb{Z})=(m n) \cdot \mathbb{Z}$ and $(m \mathbb{Z})+(n \mathbb{Z})=\operatorname{gcd}(m, n) \mathbb{Z}$.
9. More generally, for any ring R and ideals I and J in R, show that $I \cdot J$ and $I+J$ are ideals in R.
10. Given a ring R, we can define a set map $r: \mathbb{Z} \rightarrow R$ by defining the image of 0 as 0 (in R), the image of a positive integer n is the sum of n copies of 1 (in R), the image of a negative integer $-n$ is the sum of n copies of -1 (in R).
Check that the above map r has the property that $r(m+n)=r(m)+r(n)$ and $r(m \cdot n)=$ $r(m) \cdot r(n)$.
11. If $f: R \rightarrow S$ is a homomorphism of rings then define the set I to consist of elements a such that $f(a)=0$. Check that I is an ideal.
12. What are the elements a and a^{\prime} of R such that $a+I=a^{\prime}+I$?
13. Check that R / I with the operations \oplus and \odot as addition and multiplication forms a ring with $0+I$ and $1+I$ as additive and multiplicative identity respectively.
14. Starred Look for other examples of rings that you have already learned about so far.
