Solutions to Quiz 7

1. We repeatedly throw a die. Let X_{i} denote the random variable that takes the value 5 if the i-th throw is a ' 1 ' and -1 if it is anything else. Decide which of the following statements are true and which are false. Justify your answer in each case.
(a) The random variable X_{n} converges to 0 in probability.

Solution: False. Since $P\left(\left|X_{n}\right| \geq 1\right)=1$, we see that $P\left(\left|X_{n}\right|>1 / 2\right)$ does not converge to 0 as n goes to infinity.
(b) The random variable $W_{n}=X_{n} / n$ converges to 0 in probability.

Solution: True. Since $P\left(\left|X_{n}\right|<1 / 2\right)=0$, we see that $P\left(\left|W_{n}\right|<1 / 2 k\right)=0$ for $n>k$.
(c) The random variable $Y_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ converges to 0 in probability.

Solution: True. Since $E\left(X_{n}\right)=0$ and $\sigma^{2}(X)<\infty$, we have Y_{n} converges to 0 in probability by the (weak) Law of Large Numbers.
(d) The random variable $Z_{n}=\left(\sum_{i=1}^{n} X_{i}\right)$ converges to 0 in probability.

Solution: False. If Z_{n} converges to 0 then so does Z_{n-1} and hence so does $X_{n}=Z_{n}-Z_{n-1}$. We have already seen in the first part that this is not so.
(e) The random variable $T_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / \sqrt{n}$ converges in probability to a random variable Y and Y follows a normal distribution (with suitable mean and variance).

Solution: By the Central Limit Theorem $\sqrt{n}\left(S_{n}-\mu\right)$ converges to a normal distribution with mean 0 and variance $\sigma^{2}(X)$ for $S_{n}=\left(\sum_{i=1}^{n} X_{i}\right) / n$ where X_{n} are independent identically distributed random variables. In our case $\mu=0$ and $T_{n}=\sqrt{n} S_{n}$ by the definition of S_{n} given above. Hence, an application of the Central Limit Theorem gives the result.

