Solutions to Quiz 6

(2 marks) 1. An instructor gives 7 suprise quizzes during a particular semester (which is 14 weeks long). What is the probability that there is no quiz for a period of two weeks?

Solution: The expected number of quizzes every two weeks is $c=2 \cdot 7 / 14=1$. Thus, by the Poisson approximation, the probability that there are k quizzes in a given two week segment is $e^{-c} c^{k} / k$!. For $k=0$, this is e^{-c} which is e^{-1}. This is roughly 37% chance of no quiz.
(3 marks) 2. A chemist is measuring the pH of a certain solution. He wants to have 99% confidence that the result is correct with an error of at most 0.01 after checking 100 samples. What is the largest amount of variance that he can allow?

Solution: Assume the bound on the variance is M. Let X be the random variable that calculates the average of 100 experiments. We assume that $E(X)=m$ is the real value of pH .
By the weak Law of Large Numbers, we have $P(|X-m|>c) \leq M / n c^{2}$. Here $n=100=1 O^{2}$ is the number of samples and $c=0.01=10^{-2}$ is the bound on error. We want $M / n c^{2} \leq .01=10^{-2}$ to get 99% confidence. So we get $M \leq 10^{-2+2(-2)+2}=$ 10^{-4}. It is difficult to get such a variance in a real experiment in a real Chemistry lab!

