Convergence

Convergence is an important concept in Probability and Analysis. So we begin
by recalling some ideas of convergence from an earlier course.

The fundamental notion is that of convergence of a sequence (of numbers) x,,.
We say that z,, converges to 0 as n goes to infinity if, we can ensure that it is
as small as we like once we choose n sufficiently large. In other words, for any
¢ > 0, we can find k so that |z, | < ¢ for n > k.

A fundamental fact (principle of Archimides) is that the fractions 1/n go to zero
as n goes to infinity. So we can replace the above definition with the following:
for any positive integer N > 0, there is a k£ > 0 so that |z,| < 1/N for n > k.
This is sometimes a bit nicer as it suggests that we can write k (a positive
integer) as (some kind of) a function of M (also a positive integer). In many
cases of interest, this can actually be done. However, it is far from “automatic”
in general.

The above notion of convergence leads us (as shown by Cauchy) from rational
numbers to their limits, the real numbers.

In this course, we are primarily dealing with random variables, which do not
(except for constant random variables!) have a predetermined value. Hence, it
does not make sense to talk about |Z,| < ¢ as a True/False statment, but only
as a probability! Moreover, it is too much to demand that P(|Z,| < ¢) =1 for
all large n. So we need to ask for this probability to go to 1 with n.

Convergence in Probability

While stating the weak Law of Large numbers, we came across such a notion
of convergence of a sequence Z,, of random variables. The sequence is said to
converge to 0 in probability if, for any ¢ > 0, P(|Z,| > ¢) goes to zero as n goes
to infinity.

Thus, we can re-state the Weak Law of Large Numbers as follows.
Given a sequence of independent random variables X; such that o?(X;) < M

for some fixed M, let Y,, = (X1 + -+ + X,,)/n denote the “running” averages,
then Y,, — E(Y,,) converges to 0 in probability.

Why do we call this weak and how do we make it stronger?

Let us choose ¢ small, for example ¢ = 1/N for a large integer N. Then the above
condition means that we can make the probability of the event |Y,, — Y| > 1/N
very small, for example smaller than 1/M for some large integer M, by choosing
n large enough.

Ideally, we would like to have a condition which says that the union of |Y,, —Y| >
1/N is very small. This means that we have high probability for the event that



|Y,, = Y| < 1/N for all (sufficiently large) n. The above condition is weaker than
this new condition.

Almost Sure Convergence

We now look at the stronger condition that for all ¢ > 0 (small), and for all M
(large integer), there is an k so that

PUnsk(|Yn = Y[ >0¢) <1/M

This is our stronger notion of convergence, which is called convergence almost
everywhere or almost sure convergence. The latter term is used to underline that
the event that Y,, converges to Y has probability 1.

We note that this condition implies the previous condition, but is not, in any
obvious way, implied by it. Another way of describing this condition is to say
that the probability that |Y,, — Y| > ¢ for infinitely many n (or infinitely often)
is 0.

This stronger notion of convergence is what the (Strong) Law of Large Numbers
provides. It states:

Given a sequence of independent random variables X; such that o2(X;) < M
for some fixed M, let Y;, = (X1 4+ --- + X,;)/n denote the “running” averages,
then Y,, — E(Y},) converges to 0 almost surely.

We will not provide a direct proof of this during this course, but it can be derived
as a consequence of the Central Limit Theorem which is stated below.

LLN Wars

Clearly, the strong law as stated above is stronger than the weak law! Once the
strong law was proved people tried to prove the weak law with less assumptions
about the distributions of X;. For example, we can get rid of the hypothesis
that 02(X;) are uniformly bounded; after all the statement only involves the
expectations E(X;).

Thus we can ask if the weak law holds for independent identically distributed
random variables under the assumption that E(]|X;|) is finite. This version of
the weak law was proved. However, the strong law stuck back as Kolmogorov
was able to prove the strong law under the same conditions!

However, the weak law fought back! On the one hand, the assumption the
E(]X;|) is bounded was replaced with some even weaker assumptions on the
behaviour of X; in the event it takes large values, and yet the weak law was
proved. On the other hand Kolmogorov showed that any version of the strong
law must involve a bound on E(]|X;|)!



Central Limit Theorem

Let us move away from these violent and messy battles over laws and ask a
different question. What can be said about the distribution of Y,,.

In the special case of the “biased” coin, we have already seen the de Moivre-
Laplace Theorem as follows.

Let X; be the random variable that returns 1 (success) with probability p and 0
(failure) with probability 1 — p. Moreover, assume that the X; are independent
variables for the different i’s. Then S, = >, X; counts the number of successes
and is given by the Binomial distribution:

P(Sn=1)= (Z)p’"(l )"

The de Moivre-Laplace Theorem implies that we have an asymptotic identity
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We note that the running average Y, is just S,/n and E(Y,) = p = E(X;).
Moreover, o%(X;) = p(1 — p).

Given a sequence of indenpendent identically distributed random variables X;
with mean m and variance s?>. Let Y,, = (Xj + -+ + X,,)/n be the running
averages as before. The Central Limit Theorem states that we have an asymptotic
identity
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Note that a and b remain fixed as n goes to infinity.

A different way of saying this is to say that the distribution functions of v/n(Y; —
m)/s converge to a normal distribution function. This kind of convergence is
called convergence in distribution. Warning: It is important to note that this
does not say anything about the size of |Y;, — Y| for some “limiting” random
variable Y.

In order to understand the reasons behind the Central Limit Theorem (and
other limit theorems), we need to understand Characteristic Functions.
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