Solutions to Quiz 3

(5 marks) 1. A Player rolls two dice repeatedly until the numbers shown on them are different.

1. Write down the probability of the event A_{n} that there are n throws and sum on the final (n-th) throw is 7 .
2. What is the probability of $B_{n}=\cup_{k=0}^{n} A_{k}$?

Calculate the probability that the final throw gives a sum of 7 .

Solution: Let E_{i} be the event that on the i-th throw the numbers are the same. Let D_{i} be the event that on the i-throw the sum is 7 . We note that $P\left(E_{i}\right)=1 / 6$ and $P\left(D_{i}\right)=1 / 6$ as well. Then $A_{0}=$ (no throws and so no $7!$)

$$
A_{n}=E_{1} \cap \cdots \cap E_{n-1} \cap\left(E_{n}^{c} \cap D_{n}\right)
$$

Note that D_{n} and E_{n} are mutually exclusive, so we also have

$$
A_{n}=E_{1} \cap \cdots \cap E_{n-1} \cap D_{n}
$$

Since the different throws are independent we have $P\left(A_{0}\right)=0$ and $P\left(A_{n}\right)=(1 / 6)^{n}$ for $n \geq 1$.
By the argument like the one above we see that A_{n} 's are all mutually exclusive, hence $P\left(B_{n}\right)=\sum_{k=1}^{n}(1 / 6)^{n}$.
The probability that the final throw gives a sum of 7 is the same as the probability of $\cup_{n} B_{n}$. By the limiting law of probability, this is $\sup _{n} P\left(B_{n}\right)$ which is $\sum_{n=1}^{\infty}(1 / 6)^{n}$. We calculate this

$$
\sum_{n=1}^{\infty}(1 / 6)^{n}=(1 / 6) \sum_{m=0}^{\infty}(1 / 6)^{m}=(1 / 6) \frac{1}{1-(1 / 6)}=(1 / 6) \cdot(6 / 5)=1 / 5
$$

