Assignment 4

1. Implement the bisection method to calculate an approximation to the zero of a continuous function f given that $f(a)<0$ and $f(b)>0$. Ensure that there is a root at most ϵ away from the approximation. Calculate in advance, the number of steps required.
2. Apply your program to find e using $\log (e)=1$ accurate upto 2^{-53}. Use the built-in log function as well as your own program to calculate the log function.
3. Implement the linear interpolation method to calculate an approximation to the zero of a continuous function f given that $f(a<0$ and $f(b)>0$. Ensure that there is a root at most ϵ away from the approximation. Estimate in advance, the number of steps required.
4. Apply your program to find π using $\sin (\pi)=1$ accurate upto 2^{-53}. Use the built-in sin function as well as your own program to calculate the sin function.
5. Implement the Newton-Raphson method to calculate an approximation to the zero of a continuously differentiable function f given that a is close to a zero of f. Can you estimate in advance, the number of steps required to ensure that there is a root at most ϵ away from the approximation?
6. Apply your program to find $2^{1 / 3}$ accurate upto 2^{-53}.
