Quiz 9: Adjoint Functor Theorem for Posets

Question

Given \mathcal{U} is the poset of open subsets of the usual topological space \mathbb{R} of real numbers abd \mathcal{P} is the poset of *all* subsets of \mathbb{R} . Consider these posets as categories and let $F: \mathcal{U} \to \mathcal{P}$ denote the usual inclusion considered as a functor.

- 1. Does F have a left adjoint?
- 2. Does F have a right adjoint?
- 3. Explain your answer with reference to the "Adjoint functor theorem for posets".

Answer

As explained in the notes, a product in a poset P considered as a category is the greatest lower bound of a subset $S \subset P$. Similarly, a co-product is the least upper bound of a subset $S \subset P$.

In the poset \mathcal{P} which is the power set of a set R, the order relation is the inclusion of sets in other sets. It follows that, given a subset S of \mathcal{P} , its least upper bound is precisely the union $\cup_{A \in S} A$ and its greatest lower bound is precisely the intersection $\cap_{A \in S} A$.

Now, the union of a collection of open sets is in a topological space is *also* an open set. On the other hand the intersection of a collection of open sets is not, in general an open set. The *largest* open set contained in the intersection $\cap_{A \in S}$, where S is a collection of open sets, is the *interior* of this intersection int $(\cap_{A \in S})$.

It follows that the functor F preserves co-products, but does *not*, in general, preserve products. Thus, we can expect it to be the left-adjoint of a right-adjoint functor G. However, it cannot be the right-adjoint of a left-adjoint functor H.

In fact, we have a functor $G : \mathcal{P} \to \mathcal{U}$ which takes a set A to its interior int(A). Clearly this functor satisfies the following:

Given a set A and an open set U, we have $U \subset A$ if and only if $U \subset int(A)$.

This shows that G is the right-adjoint to F (which takes U to U).

On the other hand, if we had a left-adjoint functor H to F, then would need to satisfy:

Given a set A and an open set U, we have $A \subset U$ if and only if $A \subset H(U)$.

In other words, we would need to find a "smallest" open set containing a given set. When we take A = [-1, 1] we see that there is no such smallest open set. Any open set U containing A contains $U_n = (-1 - 1/n, 1 + 1/n)$ for a large enough and the intersection of U_n 's is precisely A = [-1, 1]. In fact, this also gives an example where the product in \mathcal{U} is (-1, 1) which is strictly smaller than the product [-1, 1] in \mathcal{P} . Thus, F does not preserve products.