Revisiting Yoneda Lemma

Given a category \mathcal{C}, we defined the functor A from $\mathcal{C}^{\text {opp }}$ to Set as follows:

- $A \cdot(X)=\mathcal{C}(X, A)$ for an object X in \mathcal{C}.
- $A^{\cdot}(f)(a)=a \circ f$ giving $A^{\cdot}(f): A^{\cdot}(Y) \rightarrow A^{\cdot}(X)$ for a morphism $f: X \rightarrow Y$ in \mathcal{C}.

Similarly, we defined the functor A. from \mathcal{C} to Set as follows:

- $A .(X)=\mathcal{C}(A, X)$ for an object X in \mathcal{C}.
- $A .(f)(a)=f \circ a$ giving $A .(f): A .(X) \rightarrow A .(Y)$ for a morphism $f: X \rightarrow Y$ in \mathcal{C}.

Representability and Co-representability

If F is a functor from $\mathcal{C}^{\text {opp }}$ to Set, note that for an element $a \in A^{\cdot}(X)=\mathcal{C}(X, A)$, we get a set map $F(a): F(A) \rightarrow F(X)$. Thus, we get a pairing

$$
F(A) \times A^{\prime}(X) \rightarrow F(X) \text { given by }(\alpha, a) \mapsto F(a)(\alpha)
$$

Fixing $\alpha \in F(A)$, this allows us to define, for each object X, a map $\tilde{\alpha}_{X}$: $A^{\cdot}(X) \rightarrow F(X)$ given by $a \mapsto F(a)(\alpha)$. We see easily that this gives a natural transformation $\tilde{\alpha}: A \rightarrow F$. Conversely, given a natural transformation $\eta: A \rightarrow$ F, we can define α as the image of 1_{A} under $\eta_{A}: A^{\cdot}(A) \rightarrow F(A)$ and check that $\eta=\tilde{\alpha}$.
In summary, we have an natural identification between elements $\alpha \in F(A)$ and natural transformations $\tilde{\alpha}: A \rightarrow F$. This is the Yoneda lemma for contravariant functors F.

We say that F is represented $b y(A, \alpha)$ if this natural transformation is an isomorphism of functors; equivalently, this means that $\tilde{\alpha}_{X}: \mathcal{C}(X, A) \rightarrow F(X)$ is a bijection for each object X in \mathcal{C}.
Similarly, given a functor F from \mathcal{C} to Set we have a pairing

$$
F(A) \times A .(X) \rightarrow F(X) \text { given by }(\alpha, a) \mapsto F(a)(\alpha)
$$

since $a \in A .(X)=\mathcal{C}(A, X)$ gives a set map $F(a): F(A) \rightarrow F(X)$. By repeating the argument above with minor modifications we see that this gives a natural identification between elements $\alpha \in F(A)$ and natural transformations $\tilde{\alpha}: A . \rightarrow$ F. This is the Yoneda lemma for (covariant) functors F.

We say that F is co-represented by (A, α) if this natural transformation is an isomorphism of functors; equivalently, this means that $\tilde{\alpha}_{X}: \mathcal{C}(A, X) \rightarrow F(X)$ is a bijection for each object X in \mathcal{C}.

Universals represent functors

We will now see that universal objects can be seen as representing and corepresenting functors.

To begin this discussion consider the functor U that sends every object of \mathcal{C} to the singleton set $\{\cdot\}$ and every morphism in \mathcal{C} to the identity map $1_{\{\cdot\}}$ of this singleton set. Note that this is also a functor from $\mathcal{C}^{\text {opp }}$ to Set.

What can we say about representability and co-representability of U ?
If (A, α) represents U, then $\alpha=\cdot$ is the unique element of $U(A)=\{\cdot\}$ and for every object X in \mathcal{C}, this gives a bijection $\tilde{\alpha}: \mathcal{C}(X, A) \rightarrow U(X)=\{\cdot\}$. This means that there is a unique morphism $X \rightarrow A$ for every object X in \mathcal{C}. In other words,

If A represents the singleton functor U, then A is a final object in \mathcal{C}.
Similarly, if (B, β) co-represents U, then β unique element of $U(B)=\{\cdot\}$ and for every objection X in \mathcal{C}, this gives a bijection $\tilde{\beta}: \mathcal{C}(B, X) \rightarrow U(X)=\{\cdot\}$. This means that there is a unique morphism $B \rightarrow X$ for every object X in \mathcal{C}. In other words,

If B co-represents the singleton functor U, then B is an initial object in \mathcal{C}.

Products and Limits of Schemas

Given a category \mathcal{C}, we saw that a diagram D in \mathcal{C} based on a directed graph Γ is described precisely by a functor $F_{D}: \mathbf{P}_{\Gamma} \rightarrow \mathcal{C}$, where \mathbf{P}_{Γ} is the category where objects are vertices in Γ and morphisms are directed paths in Γ.

More generally, given a (small) category \mathcal{I}, we define an \mathcal{I}-schema in \mathcal{C} to be a functor $F: \mathcal{I} \rightarrow \mathcal{C}$.

Given an object X in \mathcal{C}, we denote by ΔX the functor from \mathcal{I} to \mathcal{C} which sends every object of \mathcal{I} to X and every morphism in \mathcal{I} to the identity morphism 1_{X}. Note that this makes sense independent of the category \mathcal{I}, so we use the same notation ΔX without worrying about the category \mathcal{I}.

We noted that a morphism from X to the diagram D is described precisely by a natural transformation $\chi: \Delta X \rightarrow F_{D}$. Similarly, a morphism from the diagram D to Z is precisely a natural transformation $\xi: F_{D} \rightarrow \Delta Z$. We then looked at the category of pairs (X, χ). A final object in this category, if it exists, is precisely the product ΠD. Similarly, if there is an initial object in the category of pairs (Z, ξ), it is the co-product $\coprod D$.

More generally, we can consider the category of pairs (X, χ) where $\chi: \Delta X \rightarrow F$ is a natural transformation of functors \mathcal{I} to \mathcal{C} where morphisms $(X, \chi) \rightarrow(Y, \eta)$ are morphisms $f: X \rightarrow Y$ in \mathcal{C} that yield commutative diagrams

where $\Delta f: \Delta X \rightarrow \Delta Y$ is the natural transformation that associates f to every object of \mathcal{I}. In other words, we require $\eta \circ \Delta f=\chi$ for $f: X \rightarrow Y$ to yield a morphism $(X, \chi) \rightarrow(Y, \eta)$.

We then define the product $\left(\prod_{\mathcal{I}} F, \pi\right)$ of the \mathcal{I}-schema F in \mathcal{C} as the final object in this category, if it exists.

Similar, we consider the category of pairs (Z, ξ) where $\xi: F \rightarrow \Delta Z$ is a natural transformation of functors \mathcal{I} to \mathcal{C}, where morphisms $(Z, \xi) \rightarrow(W, \omega)$ are given by morphisms $f: Z \rightarrow W$ such that $(\Delta f) \circ \xi=\omega$.
We then define the co-product $\left(\coprod_{\mathcal{I}} F, \iota\right)$ of the \mathcal{I}-schema F in \mathcal{C} as the initial object in this category, if it exists.

We now exhibit these in terms of representation and co-representation of functors.

Functors associated with Schemas

Given a \mathcal{I}-scheme F in \mathcal{C}. (Note that this is another name for a functor F from \mathcal{I} to \mathcal{C} !)

We define a functor \bar{F} from $\mathcal{C}^{\text {opp }}$ to Set as follows:

- Given an object X in \mathcal{C} we associate the set $\bar{F}(X)$ whose elements are natural transformations $\chi: \Delta X \rightarrow F$.
- Given a morphism $f: X \rightarrow Y$ in \mathcal{C}, we associate the set map $\bar{F}(Y) \rightarrow \bar{F}(X)$ given by $\eta \mapsto \eta \circ \Delta f$.
If (A, α) represents the functor \bar{F}, then $\alpha: \Delta A \rightarrow F$ is a natural transformation such that the for every object X in \mathcal{C},

$$
f \rightarrow \alpha \circ \Delta f \text { gives a bijection } A^{\cdot}(X)=\mathcal{C}(X, A) \rightarrow \bar{F}(X)
$$

Put differently, given a $\chi: \Delta X \rightarrow F$, there is a unique $f: X \rightarrow A$ such that $\chi=\alpha \circ \Delta f$. This is precisely the same as saying that (A, α) is the product $\left(\prod_{\mathcal{I}} F, \pi\right)$.
Similarly, we define a functor \underline{F} from \mathcal{C} to Set as follows:

- Given an object Z in \mathcal{C} we associate the set $\underline{F}(Z)$ whose elements are natural transformations $\xi: F \rightarrow \Delta Z$.
- Given a morphism $f: Z \rightarrow W$ in \mathcal{C}, we associate the set map $\underline{F}(Z) \rightarrow \underline{F}(W)$ given by $\xi \mapsto(\Delta f) \circ \xi$.
If (B, β) co-represents the functor \underline{F}, then $\beta: F \rightarrow \Delta B$ is a natural transformation such that the for every object Z in \mathcal{C},

$$
f \rightarrow(\Delta f) \circ \beta \text { gives a bijection } B \cdot(X)=\mathcal{C}(B, Z) \rightarrow \underline{F}(Z)
$$

Put differently, given a $\xi: F \rightarrow \Delta Z$, there is a unique $f: B \rightarrow Z$ such that $\xi=(\Delta f) \circ \beta$. This is precisely the same as saying that (B, β) is the co-product $\left(\coprod_{\mathcal{I}} F, \iota\right)$.

Adjoint functors and representability

Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and an object A in \mathcal{D}, we ask for the representability of the functor F_{A} from $\mathcal{C}^{\text {opp }}$ to Set defined as follows:

- For an object X of \mathcal{C} we define $F_{A}(X)=\mathcal{D}(F(X), A)$.
- For a morphism $f: X \rightarrow Y$ in $\mathcal{C} D$ we define

$$
F_{A}(Y)=\mathcal{D}(F(Y), A) \rightarrow \mathcal{D}(F(X), A)=F_{A}(X) \text { given by } a \mapsto a \circ F(f)
$$

Note that F can also be seen as a functor $\mathcal{C}^{\text {opp }}$ to $\mathcal{D}^{\text {opp }}$ in an obvious way; let us denote this functor as F^{\prime}. We then check that F_{A} is the composite functor $A^{\prime} F^{\prime}$.

For (Z, z) to represent this functor, the following conditions must hold.

- Z is an object in \mathcal{C} and $z: F(Z) \rightarrow A$ is a morphism in \mathcal{D}.
- For an object X in \mathcal{C}, we have a bijection

$$
Z \cdot(X)=\mathcal{C}(X, Z) \rightarrow \mathcal{D}(F(X), A)=F_{A}(X) \text { given by } f \mapsto z \circ F(f)
$$

If $G: \mathcal{D} \rightarrow \mathcal{C}$ is a right adjoint to F, and $v_{A}: F G A \rightarrow A$ is the co-unit at the object A of \mathcal{D}, we see that $\left(G A, v_{A}\right)$ represents the functor F_{A}.

Similarly, we can define the functor F^{A} from \mathcal{C} to Set as follows:

- For an object X of \mathcal{C} we define $F^{A}(X)=\mathcal{D}(A, F(X))$.
- For a morphism $f: X \rightarrow Y$ in $\mathcal{C} D$ we define

$$
F^{A}(X)=\mathcal{D}(A, F(X)) \rightarrow \mathcal{D}(A, F(Y))=F^{A}(Y) \text { given by } a \mapsto F(f) \circ a
$$

We can check that $F^{A}=A . F$ is the composite functor.
For (W, w) to co-represent this functor, the following conditions must hold.

- W is an object in \mathcal{C} and $w: A \rightarrow F(W)$ is a morphism in \mathcal{D}.
- For an object X in \mathcal{C}, we have a bijection

$$
W .(X)=\mathcal{C}(W, X) \rightarrow \mathcal{D}(A, F(X))=F^{A}(X) \text { given by } f \mapsto F(f) \circ w
$$

If $H: \mathcal{D} \rightarrow \mathcal{C}$ is a left adjoint to F, and $u_{A}: A \rightarrow F H A$ is the unit at the object A of \mathcal{D}, we see that $\left(H A, u_{A}\right)$ co-represents the functor F^{A}.
We thus see that representable/co-representable functors are a way to interpret right/left adjoints "object-wise".

