# **Revisiting Yoneda Lemma**

Given a category  $\mathcal{C}$ , we defined the functor  $A^{\cdot}$  from  $\mathcal{C}^{\text{opp}}$  to **Set** as follows:

- $A^{\cdot}(X) = \mathcal{C}(X, A)$  for an object X in  $\mathcal{C}$ .
- $A^{\cdot}(f)(a) = a \circ f$  giving  $A^{\cdot}(f) : A^{\cdot}(Y) \to A^{\cdot}(X)$  for a morphism  $f : X \to Y$  in  $\mathcal{C}$ .

Similarly, we defined the functor A. from C to **Set** as follows:

- $A_{\cdot}(X) = \mathcal{C}(A, X)$  for an object X in  $\mathcal{C}$ .
- $A_{\cdot}(f)(a) = f \circ a$  giving  $A_{\cdot}(f) : A_{\cdot}(X) \to A_{\cdot}(Y)$  for a morphism  $f : X \to Y$  in  $\mathcal{C}$ .

### Representability and Co-representability

If F is a functor from  $\mathcal{C}^{\text{opp}}$  to **Set**, note that for an element  $a \in A^{\cdot}(X) = \mathcal{C}(X, A)$ , we get a set map  $F(a) : F(A) \to F(X)$ . Thus, we get a pairing

$$F(A) \times A^{\cdot}(X) \to F(X)$$
 given by  $(\alpha, a) \mapsto F(a)(\alpha)$ 

Fixing  $\alpha \in F(A)$ , this allows us to define, for each object X, a map  $\tilde{\alpha}_X : A^{\cdot}(X) \to F(X)$  given by  $a \mapsto F(a)(\alpha)$ . We see easily that this gives a natural transformation  $\tilde{\alpha} : A^{\cdot} \to F$ . Conversely, given a natural transformation  $\eta : A^{\cdot} \to F$ , we can define  $\alpha$  as the image of  $1_A$  under  $\eta_A : A^{\cdot}(A) \to F(A)$  and check that  $\eta = \tilde{\alpha}$ .

In summary, we have an natural identification between elements  $\alpha \in F(A)$  and natural transformations  $\tilde{\alpha} : A^{\cdot} \to F$ . This is the Yoneda lemma for contravariant functors F.

We say that F is represented by  $(A, \alpha)$  if this natural transformation is an isomorphism of functors; equivalently, this means that  $\tilde{\alpha}_X : \mathcal{C}(X, A) \to F(X)$  is a bijection for each object X in  $\mathcal{C}$ .

Similarly, given a functor F from C to **Set** we have a pairing

 $F(A) \times A(X) \to F(X)$  given by  $(\alpha, a) \mapsto F(a)(\alpha)$ 

since  $a \in A.(X) = C(A, X)$  gives a set map  $F(a) : F(A) \to F(X)$ . By repeating the argument above with minor modifications we see that this gives a natural identification between elements  $\alpha \in F(A)$  and natural transformations  $\tilde{\alpha} : A. \to F$ . This is the Yoneda lemma for (covariant) functors F.

We say that F is co-represented by  $(A, \alpha)$  if this natural transformation is an isomorphism of functors; equivalently, this means that  $\tilde{\alpha}_X : \mathcal{C}(A, X) \to F(X)$  is a bijection for each object X in  $\mathcal{C}$ .

#### Universals represent functors

We will now see that universal objects can be seen as representing and corepresenting functors. To begin this discussion consider the functor U that sends every object of C to the singleton set  $\{\cdot\}$  and every morphism in C to the identity map  $1_{\{\cdot\}}$  of this singleton set. Note that this is also a functor from  $C^{\text{opp}}$  to **Set**.

What can we say about representability and co-representability of U?

If  $(A, \alpha)$  represents U, then  $\alpha = \cdot$  is the unique element of  $U(A) = \{\cdot\}$  and for every object X in  $\mathcal{C}$ , this gives a bijection  $\tilde{\alpha} : \mathcal{C}(X, A) \to U(X) = \{\cdot\}$ . This means that there is a *unique* morphism  $X \to A$  for every object X in  $\mathcal{C}$ . In other words,

If A represents the singleton functor U, then A is a final object in C.

Similarly, if  $(B, \beta)$  co-represents U, then  $\beta$  unique element of  $U(B) = \{\cdot\}$  and for every objection X in  $\mathcal{C}$ , this gives a bijection  $\tilde{\beta} : \mathcal{C}(B, X) \to U(X) = \{\cdot\}$ . This means that there is a *unique* morphism  $B \to X$  for every object X in  $\mathcal{C}$ . In other words,

If B co-represents the singleton functor U, then B is an initial object in  $\mathcal{C}$ .

#### **Products and Limits of Schemas**

Given a category  $\mathcal{C}$ , we saw that a diagram D in  $\mathcal{C}$  based on a directed graph  $\Gamma$  is described precisely by a functor  $F_D : \mathbf{P}_{\Gamma} \to \mathcal{C}$ , where  $\mathbf{P}_{\Gamma}$  is the category where objects are vertices in  $\Gamma$  and morphisms are directed paths in  $\Gamma$ .

More generally, given a (small) category  $\mathcal{I}$ , we define an  $\mathcal{I}$ -schema in  $\mathcal{C}$  to be a functor  $F : \mathcal{I} \to \mathcal{C}$ .

Given an object X in  $\mathcal{C}$ , we denote by  $\Delta X$  the functor from  $\mathcal{I}$  to  $\mathcal{C}$  which sends every object of  $\mathcal{I}$  to X and every morphism in  $\mathcal{I}$  to the identity morphism  $1_X$ . Note that this makes sense independent of the category  $\mathcal{I}$ , so we use the same notation  $\Delta X$  without worrying about the category  $\mathcal{I}$ .

We noted that a morphism from X to the diagram D is described precisely by a natural transformation  $\chi : \Delta X \to F_D$ . Similarly, a morphism from the diagram D to Z is precisely a natural transformation  $\xi : F_D \to \Delta Z$ . We then looked at the category of pairs  $(X, \chi)$ . A final object in this category, if it exists, is precisely the product  $\prod D$ . Similarly, if there is an initial object in the category of pairs  $(Z, \xi)$ , it is the co-product  $\prod D$ .

More generally, we can consider the category of pairs  $(X, \chi)$  where  $\chi : \Delta X \to F$ is a natural transformation of functors  $\mathcal{I}$  to  $\mathcal{C}$  where morphisms  $(X, \chi) \to (Y, \eta)$ are morphisms  $f : X \to Y$  in  $\mathcal{C}$  that yield commutative diagrams



where  $\Delta f : \Delta X \to \Delta Y$  is the natural transformation that associates f to every object of  $\mathcal{I}$ . In other words, we require  $\eta \circ \Delta f = \chi$  for  $f : X \to Y$  to yield a morphism  $(X, \chi) \to (Y, \eta)$ .

We then define the product  $(\prod_{\mathcal{I}} F, \pi)$  of the  $\mathcal{I}$ -schema F in  $\mathcal{C}$  as the final object in this category, if it exists.

Similar, we consider the category of pairs  $(Z,\xi)$  where  $\xi: F \to \Delta Z$  is a natural transformation of functors  $\mathcal{I}$  to  $\mathcal{C}$ , where morphisms  $(Z,\xi) \to (W,\omega)$  are given by morphisms  $f: Z \to W$  such that  $(\Delta f) \circ \xi = \omega$ .

We then define the co-product  $(\coprod_{\mathcal{I}} F, \iota)$  of the  $\mathcal{I}$ -schema F in  $\mathcal{C}$  as the initial object in this category, if it exists.

We now exhibit these in terms of representation and co-representation of functors.

#### Functors associated with Schemas

Given a  $\mathcal{I}$ -scheme F in  $\mathcal{C}$ . (Note that this is another name for a functor F from  $\mathcal{I}$  to  $\mathcal{C}$ !)

We define a functor  $\overline{F}$  from  $\mathcal{C}^{\text{opp}}$  to **Set** as follows:

- Given an object X in C we associate the set  $\overline{F}(X)$  whose elements are natural transformations  $\chi : \Delta X \to F$ .
- Given a morphism  $f: X \to Y$  in  $\mathcal{C}$ , we associate the set map  $\overline{F}(Y) \to \overline{F}(X)$  given by  $\eta \mapsto \eta \circ \Delta f$ .

If  $(A, \alpha)$  represents the functor  $\overline{F}$ , then  $\alpha : \Delta A \to F$  is a natural transformation such that the for every object X in  $\mathcal{C}$ ,

 $f \to \alpha \circ \Delta f$  gives a bijection  $A^{\cdot}(X) = \mathcal{C}(X, A) \to \overline{F}(X)$ 

Put differently, given a  $\chi : \Delta X \to F$ , there is a unique  $f : X \to A$  such that  $\chi = \alpha \circ \Delta f$ . This is precisely the same as saying that  $(A, \alpha)$  is the product  $(\prod_{\mathcal{I}} F, \pi)$ .

Similarly, we define a functor  $\underline{F}$  from  $\mathcal{C}$  to **Set** as follows:

- Given an object Z in C we associate the set  $\underline{F}(Z)$  whose elements are natural transformations  $\xi: F \to \Delta Z$ .
- Given a morphism  $f: Z \to W$  in  $\mathcal{C}$ , we associate the set map  $\underline{F}(Z) \to \underline{F}(W)$  given by  $\xi \mapsto (\Delta f) \circ \xi$ .

If  $(B,\beta)$  co-represents the functor  $\underline{F}$ , then  $\beta: F \to \Delta B$  is a natural transformation such that the for every object Z in  $\mathcal{C}$ ,

$$f \to (\Delta f) \circ \beta$$
 gives a bijection  $B_{\cdot}(X) = \mathcal{C}(B, Z) \to \underline{F}(Z)$ 

Put differently, given a  $\xi : F \to \Delta Z$ , there is a unique  $f : B \to Z$  such that  $\xi = (\Delta f) \circ \beta$ . This is precisely the same as saying that  $(B, \beta)$  is the co-product  $(\coprod_{\mathcal{I}} F, \iota)$ .

## Adjoint functors and representability

Given a functor  $F : \mathcal{C} \to \mathcal{D}$  and an object A in  $\mathcal{D}$ , we ask for the representability of the functor  $F_A$  from  $\mathcal{C}^{\text{opp}}$  to **Set** defined as follows:

- For an object X of C we define  $F_A(X) = \mathcal{D}(F(X), A)$ .
- For a morphism  $f: X \to Y$  in  $\mathcal{CD}$  we define

$$F_A(Y) = \mathcal{D}(F(Y), A) \to \mathcal{D}(F(X), A) = F_A(X)$$
 given by  $a \mapsto a \circ F(f)$ 

Note that F can also be seen as a functor  $\mathcal{C}^{\text{opp}}$  to  $\mathcal{D}^{\text{opp}}$  in an obvious way; let us denote this functor as F'. We then check that  $F_A$  is the composite functor A F'.

For (Z, z) to represent this functor, the following conditions must hold.

- Z is an object in  $\mathcal{C}$  and  $z: F(Z) \to A$  is a morphism in  $\mathcal{D}$ .
- For an object X in  $\mathcal{C}$ , we have a bijection

$$Z^{\cdot}(X) = \mathcal{C}(X, Z) \to \mathcal{D}(F(X), A) = F_A(X)$$
 given by  $f \mapsto z \circ F(f)$ 

If  $G : \mathcal{D} \to \mathcal{C}$  is a *right adjoint* to F, and  $v_A : FGA \to A$  is the co-unit at the object A of  $\mathcal{D}$ , we see that  $(GA, v_A)$  represents the functor  $F_A$ .

Similarly, we can define the functor  $F^A$  from  $\mathcal{C}$  to **Set** as follows:

- For an object X of C we define  $F^A(X) = \mathcal{D}(A, F(X))$ .
- For a morphism  $f: X \to Y$  in  $\mathcal{CD}$  we define

$$F^{A}(X) = \mathcal{D}(A, F(X)) \to \mathcal{D}(A, F(Y)) = F^{A}(Y)$$
 given by  $a \mapsto F(f) \circ a$ 

We can check that  $F^A = A \cdot F$  is the composite functor.

For (W, w) to co-represent this functor, the following conditions must hold.

- W is an object in  $\mathcal{C}$  and  $w: A \to F(W)$  is a morphism in  $\mathcal{D}$ .
- For an object X in  $\mathcal{C}$ , we have a bijection

$$W_{\cdot}(X) = \mathcal{C}(W, X) \to \mathcal{D}(A, F(X)) = F^{A}(X)$$
 given by  $f \mapsto F(f) \circ w$ 

If  $H : \mathcal{D} \to \mathcal{C}$  is a *left adjoint* to F, and  $u_A : A \to FHA$  is the unit at the object A of  $\mathcal{D}$ , we see that  $(HA, u_A)$  co-represents the functor  $F^A$ .

We thus see that representable/co-representable functors are a way to interpret right/left adjoints "object-wise".