
Categories, Functors and Natural Transformations
(Loosely based on “Basic Category Theory” by Tom Leinster.)

Categories
A category C has two species: objects (usually denoted by capital letters) and
morphisms (usually denoted by lower case letters). A morphism is a labelled
arrow from one object to another and in this sense we can think of a category
as a special kind of directed labelled graph. Ojects and morphisms satisfy the
following properties:

• Given an object A, there is a morphism 1A : A→ A
• Given morphisms f : A → B and g : B → C, we have a composite

morphism gf : A→ C. (Sometimes we also denote this as g ◦ f to make
the composition explicit.)

• The composition of morphisms is associative. Given morphisms f : A→ B,
g : B → C and h : C → D, we have the identiy of the composite morphisms
(hg)f = h(gf) : A→ D.

• The morphisms 1A and 1B are right and left identities for morphisms
f : A→ B. In other words, we have 1B ◦ f = f = f ◦ 1A : A→ B

Sets, Groups, Topological spaces

The category Set has objects as sets, morphisms as set maps and composition as
composition of set maps. It is clear that this satisfies the properties given above.

The category Grp has objects as groups, morphisms as group homomorphisms.
It is clear that this satisfies the properties given above.

The category Top has objects as topological spaces and morphisms as continuous
maps. It is clear that this satisfies the properties given above.

We can similarly talk about the category Ring of rings (with identity), the
category Rng of rings without identity and so on.

Constructions from Mathematical Objects

Given a set S we define a category S whose objects are elements of S and the
only morphisms are the identity morphisms.

Given a group G, we can construct a category (which we can also denote as G!)
which has a single object • and morphisms from this object to itself are elements
of the group.

Given a poset P (recall that this means that P is a set with a partial order ≤),
we define a category P whose objects are elements of P and there is a unique
arrow (morphism) from a to b if a ≤ b.
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In particular, for a topological space X we can consider the category associated
with the poset O(X) of open sets in X.

Special Categories

We can consider the category 1 which has a single object • which has only the
identity morphism. This is a special case of the constructions above for the
singleton set, the singleton group, the singleton poset and the empty topological
space!

We can consider the category 1→ which has a unique non-identity morphism
between two distinct objects.

Given a category C, we have the category Copp whose objects are the objects of
C, and morphisms are also those of C but with direction of arrow reversed! We
can define composition � by writing f � g for gf . Note that 1opp = 1.

Functors
A functor F from the category C to the category D assigns to each object A
of C an object F (A) of D, and to each morphism f : A→ B of C a morphism
F (f) : F (A)→ F (B) so that the following properties are satisfied:

• Given morphisms f : A → B and g : B → C of C, we have F (gf) =
F (g)F (f) : F (A)→ F (C).

• We have F (1A) = 1F (A) : F (A)→ F (A).

Forgetful functors

Since maps of groups or topological spaces are, in particular, set maps of the
underlying sets, we obtain functors Grp→ Set (respectively Top→ Set) that
take each group (respectively topological space) to the underlying set and each
homomorphism (respectively continuous map) to the underlying map of sets.

We can do similar things with Ring, Rng and so on.

Constructions from Mathematical Objects

Given sets S and T and a set map f : S → T we can think of this as a
map of the associated categories with objects as elements of the sets and only
identity morphisms. Note that conversely, a functor between these categories is
determined by a set map.

Similarly, we see that if f : G→ H is a homomorphism of groups and we think
of G and H as categories with single objects and morphisms as elements, then
this gives a functor between these categories. Conversely, a functor between
these categories is precisely a homomorphism of groups.
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Again, if P and Q are posets thought of as categories, then order presering
morphisms from P to Q are precisely functors from the category associated with
P to the category associated with Q.

The case for the category O(X) of a topological space is more subtle in two
ways. First of all, a continuous maps f : X → Y gives an order preserving
map f−1 : O(Y ) → O(X) on the collection of opensets; the order is reversed.
Secondly, an order preserving map g : O(Y )→ O(X) need not be of the form
g = f−1 for some continuous map f : X → Y .

Other functors

A functor from the category 1 to a category C is determined by a choice of an
object A in C.

A functor from the category 1→ to a category C is determined by a choice of an
morphism f : A→ B in C. (Note that A and B need not be distinct objects in
C.)

A functor from the category Copp to a category D is similar to a functor C to
D except that arrows (morphisms) are reversed. In other words, this associates
to an object A of C an object F (A) of D, and it associates to a morphism
f : A → B of C a morphism F (f) : F (B) → F (A) of D. Such an F is often
called a contravariant functor from C to D. Note that it is not a particular type
of functor from C to D.

G-actions

A functor from the category G associated with a group to a category C gives:

• An object A of C which is associated to the single object of G.
• A morphism ρ(g) : A→ A associated to an element g of G.

These need to satisfy the following conditions:

• The identity element of G maps to the identity morphism 1A : A→ A
• The composition ρ(g) ◦ ρ(h) should be associated to the element g · h of G,

where the latter is the product of the elements g and h.

When C is taken to be the category Set of sets, this is precisely the definition
of a set A with a (left) action of G. Hence, more generally, such a object can
be considered to be an object A of C with a G-action. With this terminology,
functors from G to C correspond to objects with a given G-action.

Functors to Set

We often restrict our attention to categories such that morphisms between two
objects form a set. For example, this is true for Set and thus also for Grp and
Top. Note that in these categories, the collection of objects is not a set.
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Given objects A and B in such a category C, we use C(A,B), or sometimes
MorC(A,B), to denote the set of morphisms from A to B. Note that composition
is a set map

◦ : C(B,C)× C(A,B)→ C(A,C) given by (g, f) 7→ g ◦ f

Fixing an object A of C, we get a functor A. from C to Set that associates, to an
object B, the set A.(B) = C(A,B), and to a morphism g : B → C, the set map

A.(g) = g ◦_ : C(A,B)→ C(A,C) given by f 7→ g ◦ f

We also have a contravariant functor A. which associates, to an object B. the
set A.(B) = C(B,A), and to a morphism g : B → C, the set map

A.(g) = _ ◦ g : C(C,A)→ C(B,A) given by h 7→ h ◦ g

Note that this is a functor from Copp to Set.

Natural Transformations
It is said that Category Theory was invented by Eilenberg and Maclane in order
to formalise the intuitive notion of “natural” transformations as detailed below.

Given functors F and G from C to D, a natural transformation η : F → G gives,
for each object A of C, a morphism ηA : F (A)→ G(A), and for each morphism
f : A→ B, a commutative diagram

F (A) G(A)

F (B) G(B)

F (f)

ηA

G(f)

ηB

Recall that a diagram is said to be commutative if any path following the arrows
from one vertex to another gives the same morphism. In this case, this is another
way of saying that ηB ◦ F (f) = G(f) ◦ ηA.

Morphisms of C as natural transformations

As seen above, an object A of C can be seen as a functor 1 to C that assigns, to
the unique object of 1, the object A of C and to the unique (identity) map of 1,
the identity morphism 1A.

A morphism f : A→ B can then be seen as a natural transformation from the
functor associated to A to the functor associated to B. This natural transforma-
tion assigns, to the unique object of 1, the morphism f . The commutativity of
the above diagram is then the standard identity relation f ◦ 1A = 1B ◦ f .

Conversely, a natural transformation between these functors gives a morphism
f : A→ B and the functor is precisely the one associated with this morphism.
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G-equivariant maps as natural transformations

As seen above, a set S with a left action of a group G can be viewed as a functor
from the category associated with G to the category Set that associates to
the unique object of G, the set S, and to an element g in G, the left-action
ρ(g) : S → S considered as a (bijective) map of sets.

Suppose that another set T has the action given by τ(g) : T → T for g in G.

A natural transformation between such functors associated with S and T is, in
particular, a set map f : S → T . In addition, the commutativity of the above
digram means that τ(g) ◦ f = f ◦ ρ(g). This is precisely the condition that
the map f : S → T is G-equivariant. Writing the action as left multiplication
without ρ and τ , this equation becomes f(g · s) = g · f(s).

Natural Transformations for the “dot” Functors to Sets

Given a category C where the morphisms between objects form sets, we introduced
the functor A. from C to Set and the functor A. from Copp to Set.

A natural transformation A. → B., gives in particular, a set map A.(A) =
C(A,A)→ C(B,A) = B.(A). The image of the identity element 1A in C(A,A)
gives a morphism f : B → A associated to this natural transformation. The
above commutative diagram can then be used to show that this set map is
precisely h 7→ h ◦ f .

Conversely, given a morphism f : B → A, we can give, for each object C, the
set map

A.(C) = C(A,C)→ B.(C) = C(B,C) given by h 7→ h ◦ f

The associative law for composition can be used to show that this yields a
commutative diagram as required. In fact, this construction identifies natural
transformations A. → B. with morphisms B → A.

Similarly, one can show that a natural transformation A. → B. can be identified
with a morphism A→ B.

The above statements are versions of the Yoneda lemma which we shall explain
a little later.
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