Zariski Sheaf functors

We have seen that \mathbb{Z}-Affine schemes can be represented as functors CRing to Set with morphisms represented by natural transformations.

We have also seen that these functors satisfy the following:
Zariski Sheaf property of F : Given a commutative ring R and elements u_{1}, \ldots, u_{k} which generate the unit ideal. Given $h_{i} \in F\left(R_{u_{i}}\right)$ for $i=1, \ldots, k$ such that the images of h_{i} and h_{j} in $F\left(R_{u_{i} u_{j}}\right)$ are the same, there is a unique $h \in F(R)$ so that h_{i} is its image in $F\left(R_{u_{i}}\right)$.

Note that images are to be considered under the set maps $F(R) \rightarrow F\left(R_{u_{i}}\right)$ and $F\left(R_{u_{i}}\right) \rightarrow F\left(R_{u_{i} u_{j}}\right)$ induced by the natural ring homomorphisms $R \rightarrow R_{u_{i}}$ and $R_{u_{i}} \rightarrow R_{u_{i} u_{j}}$ under the functor F.

We now provide some discussion and examples to justify:

- The notion of schemes needs to be extended by including more functors CRing to Set.
- We should limit our attention to functors that satisfy the above Zariski sheaf condition.

Geometric Interpretation

The \mathbb{Z}-affine scheme $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ is interpreted as the locus in affine p-space \mathbb{A}^{p} defined by the vanishing of f_{1}, \ldots, f_{q}.

In particular, $A\left(x_{1}, \ldots, x_{p} ;\right)$ (a scheme with no equations in p variables) is interpreted as the affine p-space \mathbb{A}^{p}. Note that as a functor, we have $\mathbb{A}^{p}(R)=R^{p}$ as expected.

The ring $\mathcal{O}(X)$ associated with a scheme X can be seen as the ring of functions on X or equivalently, morphisms $X \rightarrow \mathbb{A}^{1}$.

In particular, $\mathcal{O}\left(\mathbb{A}^{p}\right)=\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ is the ring of functions on \mathbb{A}^{p}.
The geometric intuition is that the locus of zeros of functions is closed. Moreover, we note that if X is as above then there is a canonical morphism $X \rightarrow \mathbb{A}^{p}$ such that $X(R) \rightarrow \mathbb{A}^{p}=R^{p}$ makes $X(R)$ into a subset of R^{p}.

Subfunctor: Given a natural transformation $\eta: F \rightarrow G$ such that $\eta(R)$: $F(R) \rightarrow G(R)$ makes $F(R)$ into a subset $G(R)$, we say that this makes F into a subfunctor of G.

In particular, if F and G are schemes then we will say that F is a subscheme of G.

In terms of this terminology we can say that X is a closed subscheme of \mathbb{A}^{p}. In other words, what we have been calling \mathbb{Z}-affine schemes can also be called closed subschemes of \mathbb{A}^{p}.

Set-theoretic constructions (Simple cases)

Some set-theoretic constructions have natural geometric meaning so we try to give functorial analogues.

Product

Given sets U and V we can form the product $U \times V$ which consists of pairs (u, v) with u from U and v from V.

Given functors F and G from CRing to Set it is not difficult to see that there is a natural functor $F \times G$ as follows:

- For a ring R, we define $(F \times G)(R)=F(R) \times G(R)$
- For a ring homomorphism $f: R \rightarrow S$, we define $(F \times G)(f)=F(f) \times G(f)$.

In particular, we can apply this to the \mathbb{Z}-affine schemes $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ and $Y=A\left(y_{1}, \ldots, y_{r} ; g_{1}, \ldots, g_{s}\right)$. We note that $X . \times Y$. is the functor Z. where

$$
Z=A\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{r} ; f_{1}, \ldots, f_{q}, g_{1}, \ldots, g_{s}\right)
$$

Here, we have used the fact that x_{i} and y_{j} are dummy variables to merge them without overlap!
In fact, we note that $\mathcal{O}(Z)=\mathcal{O}(X) \otimes \mathcal{O}(Y)$ where the latter is the tensor product of the two abelian groups which has a natural ring structure as well.

Diagonal

Given a set U, we can consider it as a subset $\Delta: U \rightarrow U \times U$ via the map that sends u to the pair (u, u).

Similarly, given a functor F from CRing to Set, we can produce a natural transformation $\Delta: F \rightarrow F \times F$ that exhibits F as a subfunctor of $F \times F$.

Applying this to a \mathbb{Z}-affine scheme $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ we note that Δ exhibits X as the subscheme of $X \times X$ defined by

$$
\begin{aligned}
& \Delta_{X}=A\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{p}\right. \\
& \\
& \left.\quad f_{1}(\mathbf{x}), \ldots, f_{q}(\mathbf{x}), f_{1}(\mathbf{y}), \ldots, f_{q}(\mathbf{y}), x_{1}-y_{1}, \ldots, x_{p}-y_{p}\right)
\end{aligned}
$$

Intersection

Given subsets U and V in a set W, we have the intersection $U \cap V$ as a subset of W.

Similarly, given subfunctors F and G of a functor H from CRing to Set, we have the intersection $F \cap G$ as a subfunctor of H.

Since every \mathbb{Z}-affine scheme is a subscheme of \mathbb{A}^{p} for some p, it is enough to consider the intersection of two subschemes $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ and
$Y=A\left(x_{1}, \ldots, x_{p} ; g_{1}, \ldots, g_{r}\right)$ in \mathbb{A}^{p}. This is the subscheme $X \cap Y$ defined by

$$
X \cap Y=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}, g_{1}, \ldots, g_{s}\right)
$$

Inverse-image

Given a map $f: U \rightarrow V$ and a subset W of V, we have a subset $f^{-1}(W)$ of U called the inverse image of W under f.

$$
f^{-1}(W)=\{x \in U \mid f(x) \in W\}
$$

Similarly, given a natural transformation $\eta: F \rightarrow G$ and a subfunctor H of G, where all of these are functors from CRing to Set, we have a subfunctor $\eta^{-1}(H)$ of F.

Since every \mathbb{Z}-affine scheme is a subscheme of \mathbb{A}^{p} for some p, it is enough to consider the inverse image of a subscheme Y of \mathbb{A}^{p} under a morphism $h: X \rightarrow \mathbb{A}^{p}$.
Suppose that $X=A\left(x_{1}, \ldots, x_{r} ; f_{1}, \ldots, f_{s}\right)$ and $Y=A\left(y_{1}, \ldots, y_{p} ; g_{1}, \ldots, g_{q}\right)$.
Since h is given by a ring homomorphism $\mathbb{Z}\left[y_{1}, \ldots, y_{p}\right] \rightarrow \mathcal{O}(X)$ it is given by polynomials h_{1}, \ldots, h_{p} in the variables x_{1}, \ldots, x_{r} such that $f_{i}\left(h_{1}, \ldots, h_{r}\right)=0$ for all $i=1, \ldots, s$.
We then see that $h^{-1}(Y)=W$ is defined by

$$
W=h^{-1}(Y)=A\left(x_{1}, \ldots, x_{r} ; f_{1}, \ldots, f_{s}, g_{1}(\mathbf{h}), \ldots, g_{s}(\mathbf{h})\right)
$$

where

$$
g_{i}(\mathbf{h})=g_{i}\left(h_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, h_{r}\left(x_{1} \ldots, x_{r}\right)\right)
$$

is a polynomial in the variables x_{1}, \ldots, x_{r}.

Fibre-product

All of the above constructions are related to the notion of "Fibre-product". Given set maps $f: U \rightarrow W$ and $g: V \rightarrow W$, the fibre-product $T=U \times_{W} V$ is defined by

$$
T=U \times_{W} V=\{(u, v) \in U \times V \mid f(u)=g(v)\}
$$

we note that it is a subset of $U \times V$. In fact, there is a natural map $U \times V \rightarrow W \times W$ and the fibre-product is the inverse image of the diagonal Δ_{W} in $W \times W$.
Similarly, it is not difficult to check that if $U \rightarrow W$ and $V \rightarrow W$ are subsets of W, then $U \times_{W} V=U \cap W$.

Disjoint Union

Given two sets U and V, we can form the disjoint union $U \sqcup V$. Similarly, given two functors F and G from CRing to Set we can form $F \sqcup G$ such that

$$
(F \sqcup G)(R)=F(R) \sqcup G(R)
$$

However, this functor does not represent our geometric intuition when F and G are geometric functors as we shall see below.

Suppose that $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ and $Y=A\left(y_{1}, \ldots, y_{r} ; g_{1}, \ldots, g_{s}\right)$. Let us now examine the question of what $X \sqcup Y$ could be.

Recall that $R=\{0\}$ represents the empty space. There is only one map from the empty space to any space. Thus $(X \sqcup Y)(R)$ should be a singleton! However $X .(R) \sqcup Y .(R)$ is the disjoint union of two singletons and so has 2 elements.
So $X . \sqcup Y$. is not the "right" choice to represent the geometric disjoint union of X and Y.

The direct sum of rings

Functions on the disjoint union $X \sqcup Y$ of geometric spaces X and Y are pairs (a, b) where a is a function on X and b is a function on Y. Moreover, addition and multiplication are "entry-wise".

This suggests that $\mathcal{O}(X \sqcup Y)=\mathcal{O}(X) \oplus \mathcal{O}(Y)$. Note also that $(0,0)$ and $(1,1)$ serve as the 0 -element and the 1-element respectively. Note that this ring has two idempotents $e_{X}=(1,0)$ and $e_{Y}=(0,1)$ which satisfy

- $e_{X}^{2}=e_{X}$ and $e_{Y}^{2}=e_{Y}$
- $e_{X} e_{Y}=0$ and $e_{X}+e_{Y}=1$

Such a pair of idempotents in a ring is called a decomposition of identity into a pair of orthogonal idempotents.
We can check that

$$
\begin{aligned}
& \mathcal{O}(X) \oplus \mathcal{O}(Y) \cong \\
& \frac{\mathbb{Z}\left[u, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{r}\right]}{\left\langle f_{1}, \ldots, f_{q}, g_{1}, \ldots, g_{s}, u(1-u), u x_{1}, \ldots, u x_{p},(1-u) y_{1}, \ldots,(1-u) y_{r}\right\rangle}
\end{aligned}
$$

Here u and $1-u$ are give the required pair of idempotents.
In other words, this ring is associated with the \mathbb{Z}-affine scheme

$$
\begin{aligned}
A\left(u, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{r} ;\right. & f_{1}, \ldots, f_{q}, g_{1}, \ldots, g_{s} \\
& \left.u(1-u), u x_{1}, \ldots, u x_{p},(1-u) y_{1}, \ldots,(1-u) y_{r}\right)
\end{aligned}
$$

We will now use $X \sqcup Y$ for this affine scheme, but use $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ in place of the above more cumbersome notation (using u) in place of the ring $\mathcal{O}(X \sqcup Y)$.
The question remains why $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ is the "right" choice. So we check that it does the "right" things.

Case where $R=\{0\}$
First of all, let us note that there is only one homomorphism from any ring to the ring $\{0\}$. Thus, as required, $(X \sqcup Y)(\{0\})$ is a singleton!

Case where R has only trivial idempotents

Now, if R is a ring where the only idempotents are 0 and 1 with $1 \neq 0$, then a homomorphism $f: \mathcal{O}(X) \oplus \mathcal{O}(Y) \rightarrow R$ has the property that exactly one of the following holds:

- $f\left(e_{X}\right)=1$ and $f\left(e_{Y}\right)=0$
- $f\left(e_{X}\right)=0$ and $f\left(e_{Y}\right)=1$

It follows that if R is a ring with 0 and 1 as the only idempotents, and $1 \neq 0$ then

$$
\operatorname{Hom}(\mathcal{O}(X) \oplus \mathcal{O}(Y), R)=\operatorname{Hom}(\mathcal{O}(X), R) \sqcup \operatorname{Hom}(\mathcal{O}(Y), R)
$$

Here the first term on the right is identified with maps that are 0 on $\mathcal{O}(Y)$ and the second term on the right is identified with maps that are 0 on $\mathcal{O}(X)$. So in this case,

$$
X(R) \sqcup Y(R)=(X \sqcup Y)(R)
$$

Exercise: How did we use $1 \neq 0$?

Case where R has non-trivial idempotents

When R does have a non-trivial idempotent e_{1} (i.e. e_{1} and $e_{2}=1-e_{1}$ are both non-zero), the situation becomes more complicated.

Note that even in this case, the previous calculations show that

$$
X(R) \sqcup Y(R) \subset(X \sqcup Y)(R)
$$

In addition to homomorphisms on the left-hand side, we can have a ring homomorphism $f: \mathcal{O}(X) \oplus \mathcal{O}(Y) \rightarrow R$ with $f\left(e_{X}\right)=e_{1}$ and $f\left(e_{Y}\right)=e_{2}$. We can also have a ring homomorphism $f: \mathcal{O}(X) \oplus \mathcal{O}(Y) \rightarrow R$ with $f\left(e_{X}\right)=e_{2}$ and $f\left(e_{Y}\right)=e_{1}$.
Note that e_{1} and e_{2} give a decomposition of identity into a pair of orthogonal idempotents in the ring R. It follows that $R_{e_{1}}=R e_{1}$ and $R_{e_{2}}=R e_{2}$. Note also that $R=R e_{1} \oplus R e_{2}$ and $R_{e_{1} e_{2}}=\{0\}$.
A homomorphism $f: \mathcal{O}(X) \oplus \mathcal{O}(Y) \rightarrow R$ such that $f\left(e_{X}\right)=e_{1}$ gives rise to elements $f_{1} \in \operatorname{Hom}\left(\mathcal{O}(X), R e_{1}\right)$ and $f_{2} \in \operatorname{Hom}\left(\mathcal{O}(Y), R e_{2}\right)$. So we have

$$
\begin{aligned}
& f_{1} \in X\left(R_{e_{1}}\right) \subset(X \sqcup Y)\left(R_{e_{1}}\right) \\
& f_{2} \in Y\left(R_{e_{2}}\right) \subset(X \sqcup Y)\left(R_{e_{2}}\right)
\end{aligned}
$$

Moreover, their images in $(X \sqcup Y)\left(R_{e_{1} e_{2}}\right)$ are the same since this is a singleton.
The existence of an element f in $(X \sqcup Y)(R)$ in this case is an application of the sheaf condition! This shows us the importance of the sheaf condition.

Exercise: Show that disjoint union $X . \amalg Y$. as functors does not satisfy the sheaf condition.

Complement

Given a subset V of a set U, we can form the complement $U \backslash V$.
However, if G is a subfunctor F of functors CRing to Set, then we do not have a functor that associates $F(R) \backslash G(R)$ to the ring R for every ring R. The reason is that for some ring homomorphism $f: R \rightarrow S$, some element of $F(R) \backslash G(R)$ may have image in $G(S)$ under $F(f)$.

For example, consider a \mathbb{Z}-affine scheme $Y=A(x ; x)$ as a subscheme of \mathbb{A}^{1} and the ring homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z} /\langle 5\rangle$. We have the \mathbb{Z}-point of \mathbb{A}^{1} given by the homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ that maps x to 5 whose image under f is in $Y(\mathbb{Z} /\langle 5\rangle)$.
More generally, if we want to have a notion of the complement of $X=$ $A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ in \mathbb{A}^{p}, we have to ensure that an R-point in the "complement of X " should go to an S-point in the "complement of X " for every ring homomorphism $f: R \rightarrow S$.

Now an R-point of \mathbb{A}^{p} can be seen as a ring homomorphism a : $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right] \rightarrow$ R. Saying that it is in the complement of $X(R)$ means that the image ideal $I=\mathbf{a}\left\langle f_{1}, \ldots, f_{q}\right\rangle R$ is not the zero ideal in R.

The above condition, means we want the ideal I in R such that its image $f(I) S$ under every homomorphism $f: R \rightarrow S$ is a non-zero ideal. Since we can always take $S=R / I$, this appears to be problematic!

Now, we already decided that maps from to any space is a singleton whereas $\mathbb{A}^{p}(\{0\})-X(\{0\})$ is empty! Thus, we can allow the the image of I to be $\{0\}$ in the case of $f: R \rightarrow\{0\}$.

So one way to state the above condition is that $I=R$. Now, the image ideal $f(I) S$ under any homomorphism $f: R \rightarrow S$ also satisfies $f(I) S=S$.

Quasi-affine \mathbb{Z}-scheme

A quasi-affine \mathbb{Z}-scheme is denoted $A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q} ; g_{1}, \ldots, g_{r}\right)$.
We conceptually think of this as the locus of points in \mathbb{A}^{p} which satisfy the equations $f_{i}=0$ for $i-1, \ldots, q$ and $\left\langle g_{1}, \ldots, g_{r}\right\rangle$ "do not all vanish".
To the quasi-affine scheme $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q} ; g_{1}, \ldots, g_{r}\right)$ we associate a functor of points X. from CRing to Set. This associates to a ring R, the set

$$
\begin{aligned}
X .(R)=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right) \mid\left\langle f_{1}(\mathbf{a}), \ldots, f_{q}(\mathbf{a})\right\rangle_{R}\right. & =\langle 0\rangle_{R} \\
& \text { and } \left.\left\langle g_{1}(\mathbf{a}), \ldots, g_{r}(\mathbf{a})\right\rangle_{R}=R\right\}
\end{aligned}
$$

One special case is when $r=1$. In that case, the requirement that $\left\langle g_{1}(\mathbf{a})\right\rangle=R$ is the same as the requirement that $g_{1}(\mathbf{a})$ is a unit in R. Hence, we see that

$$
A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q} ; g_{1}, \ldots, g_{r}\right)=A\left(x_{1}, \ldots, x_{p}, u ; f_{1}, \ldots, f_{q}, u g_{1}-1 ;\right)
$$

which is a \mathbb{Z}-affine scheme.

In general, given $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q} ; g_{1}, \ldots, g_{r}\right)$, there need not be a \mathbb{Z}-affine scheme Y and a natural transformation $X \rightarrow Y$ which is a bijection on R-points for all R. For example, we can see this for $\mathbb{A}^{2} \backslash\{(0,0)\}$ as we shall see.

