
Zariski Sheaf functors
We have seen that Z-Affine schemes can be represented as functors CRing to
Set with morphisms represented by natural transformations.

We have also seen that these functors satisfy the following:

Zariski Sheaf property of F : Given a commutative ring R and elements
u1, . . . , uk which generate the unit ideal. Given hi ∈ F (Rui

) for i = 1, . . . , k
such that the images of hi and hj in F (Ruiuj

) are the same, there is a
unique h ∈ F (R) so that hi is its image in F (Rui).

Note that images are to be considered under the set maps F (R)→ F (Rui
) and

F (Rui)→ F (Ruiuj ) induced by the natural ring homomorphisms R→ Rui and
Rui → Ruiuj under the functor F .

We now provide some discussion and examples to justify:

• The notion of schemes needs to be extended by including more functors
CRing to Set.

• We should limit our attention to functors that satisfy the above Zariski
sheaf condition.

Geometric Interpretation

The Z-affine scheme X = A(x1, . . . , xp; f1, . . . , fq) is interpreted as the locus in
affine p-space Ap defined by the vanishing of f1, . . . , fq.

In particular, A(x1, . . . , xp; ) (a scheme with no equations in p variables) is
interpreted as the affine p-space Ap. Note that as a functor, we have Ap(R) = Rp

as expected.

The ring O(X) associated with a scheme X can be seen as the ring of functions
on X or equivalently, morphisms X → A1.

In particular, O(Ap) = Z[x1, . . . , xp] is the ring of functions on Ap.

The geometric intuition is that the locus of zeros of functions is closed. Moreover,
we note that if X is as above then there is a canonical morphism X → Ap such
that X(R)→ Ap = Rp makes X(R) into a subset of Rp.

Subfunctor: Given a natural transformation η : F → G such that η(R) :
F (R)→ G(R) makes F (R) into a subset G(R), we say that this makes F
into a subfunctor of G.

In particular, if F and G are schemes then we will say that F is a subscheme of
G.

In terms of this terminology we can say that X is a closed subscheme of Ap.
In other words, what we have been calling Z-affine schemes can also be called
closed subschemes of Ap.
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Set-theoretic constructions (Simple cases)
Some set-theoretic constructions have natural geometric meaning so we try to
give functorial analogues.

Product

Given sets U and V we can form the product U ×V which consists of pairs (u, v)
with u from U and v from V .

Given functors F and G from CRing to Set it is not difficult to see that there
is a natural functor F ×G as follows:

• For a ring R, we define (F ×G)(R) = F (R)×G(R)
• For a ring homomorphism f : R→ S, we define (F ×G)(f) = F (f)×G(f).

In particular, we can apply this to the Z-affine schemesX = A(x1, . . . , xp; f1, . . . , fq)
and Y = A(y1, . . . , yr; g1, . . . , gs). We note that X. × Y. is the functor Z. where

Z = A(x1, . . . , xp, y1, . . . , yr; f1, . . . , fq, g1, . . . , gs)

Here, we have used the fact that xi and yj are dummy variables to merge them
without overlap!

In fact, we note that O(Z) = O(X)⊗O(Y ) where the latter is the tensor product
of the two abelian groups which has a natural ring structure as well.

Diagonal

Given a set U , we can consider it as a subset ∆ : U → U × U via the map that
sends u to the pair (u, u).

Similarly, given a functor F from CRing to Set, we can produce a natural
transformation ∆ : F → F × F that exhibits F as a subfunctor of F × F .

Applying this to a Z-affine scheme X = A(x1, . . . , xp; f1, . . . , fq) we note that ∆
exhibits X as the subscheme of X ×X defined by

∆X = A (x1, . . . , xp, y1, . . . , yp;
f1(x), . . . , fq(x), f1(y), . . . , fq(y), x1 − y1, . . . , xp − yp)

Intersection

Given subsets U and V in a set W , we have the intersection U ∩ V as a subset
of W .

Similarly, given subfunctors F and G of a functor H from CRing to Set, we
have the intersection F ∩G as a subfunctor of H.

Since every Z-affine scheme is a subscheme of Ap for some p, it is enough to
consider the intersection of two subschemes X = A(x1, . . . , xp; f1, . . . , fq) and
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Y = A(x1, . . . , xp; g1, . . . , gr) in Ap. This is the subscheme X ∩ Y defined by

X ∩ Y = A(x1, . . . , xp; f1, . . . , fq, g1, . . . , gs)

Inverse-image

Given a map f : U → V and a subset W of V , we have a subset f−1(W ) of U
called the inverse image of W under f .

f−1(W ) = {x ∈ U |f(x) ∈W}

Similarly, given a natural transformation η : F → G and a subfunctor H of G,
where all of these are functors from CRing to Set, we have a subfunctor η−1(H)
of F .

Since every Z-affine scheme is a subscheme of Ap for some p, it is enough to
consider the inverse image of a subscheme Y of Ap under a morphism h : X → Ap.

Suppose that X = A(x1, . . . , xr; f1, . . . , fs) and Y = A(y1, . . . , yp; g1, . . . , gq).

Since h is given by a ring homomorphism Z[y1, . . . , yp] → O(X) it is given by
polynomials h1, . . . , hp in the variables x1, . . . , xr such that fi(h1, . . . , hr) = 0
for all i = 1, . . . , s.

We then see that h−1(Y ) = W is defined by

W = h−1(Y ) = A(x1, . . . , xr; f1, . . . , fs, g1(h), . . . , gs(h))

where
gi(h) = gi (h1 (x1, . . . , xr) , . . . , hr (x1. . . . , xr))

is a polynomial in the variables x1, . . . , xr.

Fibre-product

All of the above constructions are related to the notion of “Fibre-product”. Given
set maps f : U →W and g : V →W , the fibre-product T = U ×W V is defined
by

T = U ×W V = {(u, v) ∈ U × V |f(u) = g(v)}
we note that it is a subset of U×V . In fact, there is a natural map U×V →W×W
and the fibre-product is the inverse image of the diagonal ∆W in W ×W .

Similarly, it is not difficult to check that if U →W and V →W are subsets of
W , then U ×W V = U ∩W .

Disjoint Union
Given two sets U and V , we can form the disjoint union U t V . Similarly, given
two functors F and G from CRing to Set we can form F tG such that

(F tG)(R) = F (R) tG(R)
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However, this functor does not represent our geometric intuition when F and G
are geometric functors as we shall see below.

Suppose that X = A(x1, . . . , xp; f1, . . . , fq) and Y = A(y1, . . . , yr; g1, . . . , gs).
Let us now examine the question of what X t Y could be.

Recall that R = {0} represents the empty space . There is only one map from
the empty space to any space. Thus (X t Y )(R) should be a singleton! However
X.(R) t Y.(R) is the disjoint union of two singletons and so has 2 elements.

So X. t Y. is not the “right” choice to represent the geometric disjoint union of
X and Y .

The direct sum of rings

Functions on the disjoint union X t Y of geometric spaces X and Y are pairs
(a, b) where a is a function on X and b is a function on Y . Moreover, addition
and multiplication are “entry-wise”.

This suggests that O(X t Y ) = O(X)⊕O(Y ). Note also that (0, 0) and (1, 1)
serve as the 0-element and the 1-element respectively. Note that this ring has
two idempotents eX = (1, 0) and eY = (0, 1) which satisfy

• e2
X = eX and e2

Y = eY

• eXeY = 0 and eX + eY = 1

Such a pair of idempotents in a ring is called a decomposition of identity into a
pair of orthogonal idempotents.

We can check that

O(X)⊕O(Y ) ∼=
Z[u, x1, . . . , xp, y1, . . . , yr]

〈f1, . . . , fq, g1, . . . , gs, u(1− u), ux1, . . . , uxp, (1− u)y1, . . . , (1− u)yr〉

Here u and 1− u are give the required pair of idempotents.

In other words, this ring is associated with the Z-affine scheme

A (u, x1, . . . , xp, y1, . . . , yr; f1, . . . , fq, g1, . . . , gs,

u(1− u), ux1, . . . , uxp, (1− u)y1, . . . , (1− u)yr)

We will now use X t Y for this affine scheme, but use O(X)⊕O(Y ) in place of
the above more cumbersome notation (using u) in place of the ring O(X t Y ).

The question remains why O(X)⊕O(Y ) is the “right” choice. So we check that
it does the “right” things.

Case where R = {0}

First of all, let us note that there is only one homomorphism from any ring to
the ring {0}. Thus, as required, (X t Y )({0}) is a singleton!
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Case where R has only trivial idempotents

Now, if R is a ring where the only idempotents are 0 and 1 with 1 6= 0, then a
homomorphism f : O(X)⊕O(Y )→ R has the property that exactly one of the
following holds:

• f(eX) = 1 and f(eY ) = 0
• f(eX) = 0 and f(eY ) = 1

It follows that if R is a ring with 0 and 1 as the only idempotents, and 1 6= 0
then

Hom (O(X)⊕O(Y ), R) = Hom (O(X), R) tHom (O(Y ), R)

Here the first term on the right is identified with maps that are 0 on O(Y ) and
the second term on the right is identified with maps that are 0 on O(X). So in
this case,

X(R) t Y (R) = (X t Y )(R)

Exercise: How did we use 1 6= 0?

Case where R has non-trivial idempotents

When R does have a non-trivial idempotent e1 (i.e. e1 and e2 = 1− e1 are both
non-zero), the situation becomes more complicated.

Note that even in this case, the previous calculations show that

X(R) t Y (R) ⊂ (X t Y )(R)

In addition to homomorphisms on the left-hand side, we can have a ring homo-
morphism f : O(X) ⊕ O(Y ) → R with f(eX) = e1 and f(eY ) = e2. We can
also have a ring homomorphism f : O(X) ⊕ O(Y ) → R with f(eX) = e2 and
f(eY ) = e1.

Note that e1 and e2 give a decomposition of identity into a pair of orthogonal
idempotents in the ring R. It follows that Re1 = Re1 and Re2 = Re2. Note also
that R = Re1 ⊕Re2 and Re1e2 = {0}.

A homomorphism f : O(X) ⊕ O(Y ) → R such that f(eX) = e1 gives rise to
elements f1 ∈ Hom(O(X), Re1) and f2 ∈ Hom(O(Y ), Re2). So we have

f1 ∈ X(Re1) ⊂ (X t Y )(Re1)
f2 ∈ Y (Re2) ⊂ (X t Y )(Re2)

Moreover, their images in (X t Y )(Re1e2) are the same since this is a singleton.

The existence of an element f in (X t Y )(R) in this case is an application of
the sheaf condition! This shows us the importance of the sheaf condition.

Exercise: Show that disjoint union X.

∐
Y. as functors does not satisfy the

sheaf condition.
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Complement
Given a subset V of a set U , we can form the complement U \ V .

However, if G is a subfunctor F of functors CRing to Set, then we do not have
a functor that associates F (R)\G(R) to the ring R for every ring R. The reason
is that for some ring homomorphism f : R→ S, some element of F (R) \G(R)
may have image in G(S) under F (f).

For example, consider a Z-affine scheme Y = A(x;x) as a subscheme of A1 and
the ring homomorphism f : Z→ Z/〈5〉. We have the Z-point of A1 given by the
homomorphism Z[x]→ Z that maps x to 5 whose image under f is in Y (Z/〈5〉).

More generally, if we want to have a notion of the complement of X =
A(x1, . . . , xp; f1, . . . , fq) in Ap, we have to ensure that an R-point in the “com-
plement of X” should go to an S-point in the “complement of X” for every ring
homomorphism f : R→ S.

Now an R-point of Ap can be seen as a ring homomorphism a : Z[x1, . . . , xp]→
R. Saying that it is in the complement of X(R) means that the image ideal
I = a〈f1, . . . , fq〉R is not the zero ideal in R.

The above condition, means we want the ideal I in R such that its image f(I)S
under every homomorphism f : R→ S is a non-zero ideal. Since we can always
take S = R/I, this appears to be problematic!

Now, we already decided that maps from to any space is a singleton whereas
Ap({0})−X({0}) is empty! Thus, we can allow the the image of I to be {0} in
the case of f : R→ {0}.

So one way to state the above condition is that I = R. Now, the image ideal
f(I)S under any homomorphism f : R→ S also satisfies f(I)S = S.

Quasi-affine Z-scheme

A quasi-affine Z-scheme is denoted A(x1, . . . , xp; f1, . . . , fq; g1, . . . , gr).

We conceptually think of this as the locus of points in Ap which satisfy the
equations fi = 0 for i− 1, . . . , q and 〈g1, . . . , gr〉 “do not all vanish”.

To the quasi-affine scheme X = A(x1, . . . , xp; f1, . . . , fq; g1, . . . , gr) we associate
a functor of points X. from CRing to Set. This associates to a ring R, the set

X.(R) = {a = (a1, . . . , ap) | 〈f1(a), . . . , fq(a)〉R = 〈0〉R
and 〈g1(a), . . . , gr(a)〉R = R}

One special case is when r = 1. In that case, the requirement that 〈g1(a)〉 = R
is the same as the requirement that g1(a) is a unit in R. Hence, we see that

A(x1, . . . , xp; f1, . . . , fq; g1, . . . , gr) = A(x1, . . . , xp, u; f1, . . . , fq, ug1 − 1; )

which is a Z-affine scheme.
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In general, given X = A(x1, . . . , xp; f1, . . . , fq; g1, . . . , gr), there need not be a
Z-affine scheme Y and a natural transformation X → Y which is a bijection on
R-points for all R. For example, we can see this for A2 \ {(0, 0)} as we shall see.

7


	Zariski Sheaf functors
	Geometric Interpretation
	Set-theoretic constructions (Simple cases)
	Product
	Diagonal
	Intersection
	Inverse-image
	Fibre-product

	Disjoint Union
	The direct sum of rings
	Case where R=\{0\}
	Case where R has only trivial idempotents
	Case where R has non-trivial idempotents

	Complement
	Quasi-affine \mathbb{Z}-scheme



