Zariski Sheaf functors

We have seen that Z-Affine schemes can be represented as functors **CRing** to **Set** with morphisms represented by natural transformations.

We have also seen that these functors satisfy the following:

Zariski Sheaf property of F: Given a commutative ring R and elements u_1, \ldots, u_k which generate the unit ideal. Given $h_i \in F(R_{u_i})$ for $i = 1, \ldots, k$ such that the images of h_i and h_j in $F(R_{u_iu_j})$ are the same, there is a unique $h \in F(R)$ so that h_i is its image in $F(R_{u_i})$.

Note that images are to be considered under the set maps $F(R) \to F(R_{u_i})$ and $F(R_{u_i}) \to F(R_{u_iu_j})$ induced by the natural ring homomorphisms $R \to R_{u_i}$ and $R_{u_i} \to R_{u_iu_j}$ under the functor F.

We now provide some discussion and examples to justify:

- The notion of schemes needs to be extended by including more functors **CRing** to **Set**.
- We should limit our attention to functors that satisfy the above Zariski sheaf condition.

Geometric Interpretation

The Z-affine scheme $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ is interpreted as the locus in affine *p*-space \mathbb{A}^p defined by the vanishing of f_1, \ldots, f_q .

In particular, $A(x_1, \ldots, x_p;)$ (a scheme with no equations in p variables) is interpreted as the affine p-space \mathbb{A}^p . Note that as a functor, we have $\mathbb{A}^p(R) = R^p$ as expected.

The ring $\mathcal{O}(X)$ associated with a scheme X can be seen as the ring of functions on X or equivalently, morphisms $X \to \mathbb{A}^1$.

In particular, $\mathcal{O}(\mathbb{A}^p) = \mathbb{Z}[x_1, \dots, x_p]$ is the ring of functions on \mathbb{A}^p .

The geometric intuition is that the locus of zeros of functions is *closed*. Moreover, we note that if X is as above then there is a canonical morphism $X \to \mathbb{A}^p$ such that $X(R) \to \mathbb{A}^p = R^p$ makes X(R) into a *subset* of R^p .

Subfunctor: Given a natural transformation $\eta : F \to G$ such that $\eta(R) : F(R) \to G(R)$ makes F(R) into a subset G(R), we say that this makes F into a subfunctor of G.

In particular, if F and G are schemes then we will say that F is a *subscheme* of G.

In terms of this terminology we can say that X is a *closed subscheme* of \mathbb{A}^p . In other words, what we have been calling \mathbb{Z} -affine schemes can also be called closed subschemes of \mathbb{A}^p .

Set-theoretic constructions (Simple cases)

Some set-theoretic constructions have natural geometric meaning so we try to give functorial analogues.

Product

Given sets U and V we can form the product $U \times V$ which consists of pairs (u, v) with u from U and v from V.

Given functors F and G from **CRing** to **Set** it is not difficult to see that there is a natural functor $F \times G$ as follows:

- For a ring R, we define $(F \times G)(R) = F(R) \times G(R)$
- For a ring homomorphism $f : R \to S$, we define $(F \times G)(f) = F(f) \times G(f)$.

In particular, we can apply this to the \mathbb{Z} -affine schemes $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ and $Y = A(y_1, \ldots, y_r; g_1, \ldots, g_s)$. We note that $X \times Y$ is the functor Z where

$$Z = A(x_1, \ldots, x_p, y_1, \ldots, y_r; f_1, \ldots, f_q, g_1, \ldots, g_s)$$

Here, we have used the fact that x_i and y_j are *dummy* variables to merge them without overlap!

In fact, we note that $\mathcal{O}(Z) = \mathcal{O}(X) \otimes \mathcal{O}(Y)$ where the latter is the tensor product of the two abelian groups which has a natural ring structure as well.

Diagonal

Given a set U, we can consider it as a subset $\Delta : U \to U \times U$ via the map that sends u to the pair (u, u).

Similarly, given a functor F from **CRing** to **Set**, we can produce a natural transformation $\Delta: F \to F \times F$ that exhibits F as a subfunctor of $F \times F$.

Applying this to a \mathbb{Z} -affine scheme $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ we note that Δ exhibits X as the subscheme of $X \times X$ defined by

$$\Delta_X = A(x_1, \dots, x_p, y_1, \dots, y_p; f_1(\mathbf{x}), \dots, f_q(\mathbf{x}), f_1(\mathbf{y}), \dots, f_q(\mathbf{y}), x_1 - y_1, \dots, x_p - y_p)$$

Intersection

Given subsets U and V in a set W, we have the intersection $U \cap V$ as a subset of W.

Similarly, given subfunctors F and G of a functor H from **CRing** to **Set**, we have the intersection $F \cap G$ as a subfunctor of H.

Since every \mathbb{Z} -affine scheme is a subscheme of \mathbb{A}^p for some p, it is enough to consider the intersection of two subschemes $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ and

 $Y = A(x_1, \ldots, x_p; g_1, \ldots, g_r)$ in \mathbb{A}^p . This is the subscheme $X \cap Y$ defined by

$$X \cap Y = A(x_1, \dots, x_p; f_1, \dots, f_q, g_1, \dots, g_s)$$

Inverse-image

Given a map $f: U \to V$ and a subset W of V, we have a subset $f^{-1}(W)$ of U called the inverse image of W under f.

$$f^{-1}(W) = \{x \in U | f(x) \in W\}$$

Similarly, given a natural transformation $\eta: F \to G$ and a subfunctor H of G, where all of these are functors from **CRing** to **Set**, we have a subfunctor $\eta^{-1}(H)$ of F.

Since every \mathbb{Z} -affine scheme is a subscheme of \mathbb{A}^p for some p, it is enough to consider the inverse image of a subscheme Y of \mathbb{A}^p under a morphism $h: X \to \mathbb{A}^p$.

Suppose that $X = A(x_1, ..., x_r; f_1, ..., f_s)$ and $Y = A(y_1, ..., y_p; g_1, ..., g_q)$.

Since h is given by a ring homomorphism $\mathbb{Z}[y_1, \ldots, y_p] \to \mathcal{O}(X)$ it is given by polynomials h_1, \ldots, h_p in the variables x_1, \ldots, x_r such that $f_i(h_1, \ldots, h_r) = 0$ for all $i = 1, \ldots, s$.

We then see that $h^{-1}(Y) = W$ is defined by

$$W = h^{-1}(Y) = A(x_1, \dots, x_r; f_1, \dots, f_s, g_1(\mathbf{h}), \dots, g_s(\mathbf{h}))$$

where

$$g_i(\mathbf{h}) = g_i (h_1 (x_1, \dots, x_r), \dots, h_r (x_1, \dots, x_r))$$

is a polynomial in the variables x_1, \ldots, x_r .

Fibre-product

All of the above constructions are related to the notion of "Fibre-product". Given set maps $f: U \to W$ and $g: V \to W$, the *fibre-product* $T = U \times_W V$ is defined by

$$T = U \times_W V = \{(u, v) \in U \times V | f(u) = g(v)\}$$

we note that it is a subset of $U \times V$. In fact, there is a natural map $U \times V \to W \times W$ and the fibre-product is the inverse image of the diagonal Δ_W in $W \times W$.

Similarly, it is not difficult to check that if $U \to W$ and $V \to W$ are subsets of W, then $U \times_W V = U \cap W$.

Disjoint Union

Given two sets U and V, we can form the disjoint union $U \sqcup V$. Similarly, given two functors F and G from **CRing** to **Set** we can form $F \sqcup G$ such that

$$(F \sqcup G)(R) = F(R) \sqcup G(R)$$

However, this functor *does not* represent our geometric intuition when F and Gare geometric functors as we shall see below.

Suppose that $X = A(x_1, ..., x_p; f_1, ..., f_q)$ and $Y = A(y_1, ..., y_r; g_1, ..., g_s)$. Let us now examine the question of what $X \sqcup Y$ could be.

Recall that $R = \{0\}$ represents the empty space. There is only one map from the empty space to any space. Thus $(X \sqcup Y)(R)$ should be a singleton! However $X(R) \sqcup Y(R)$ is the disjoint union of two singletons and so has 2 elements.

So $X \sqcup Y$ is not the "right" choice to represent the geometric disjoint union of X and Y.

The direct sum of rings

Functions on the disjoint union $X \sqcup Y$ of geometric spaces X and Y are *pairs* (a, b) where a is a function on X and b is a function on Y. Moreover, addition and multiplication are "entry-wise".

This suggests that $\mathcal{O}(X \sqcup Y) = \mathcal{O}(X) \oplus \mathcal{O}(Y)$. Note also that (0,0) and (1,1)serve as the 0-element and the 1-element respectively. Note that this ring has two idempotents $e_X = (1, 0)$ and $e_Y = (0, 1)$ which satisfy

- e_X² = e_X and e_Y² = e_Y
 e_Xe_Y = 0 and e_X + e_Y = 1

Such a pair of idempotents in a ring is called a *decomposition of identity into a* pair of orthogonal idempotents.

We can check that

$$\mathcal{O}(X) \oplus \mathcal{O}(Y) \cong \frac{\mathbb{Z}[u, x_1, \dots, x_p, y_1, \dots, y_r]}{\langle f_1, \dots, f_q, g_1, \dots, g_s, u(1-u), ux_1, \dots, ux_p, (1-u)y_1, \dots, (1-u)y_r \rangle}$$

Here u and 1 - u are give the required pair of idempotents.

In other words, this ring is associated with the Z-affine scheme

$$A(u, x_1, \dots, x_p, y_1, \dots, y_r; f_1, \dots, f_q, g_1, \dots, g_s, u(1-u), ux_1, \dots, ux_p, (1-u)y_1, \dots, (1-u)y_r)$$

We will now use $X \sqcup Y$ for this affine scheme, but use $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ in place of the above more cumbersome notation (using u) in place of the ring $\mathcal{O}(X \sqcup Y)$.

The question remains why $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ is the "right" choice. So we check that it does the "right" things.

Case where $R = \{0\}$

First of all, let us note that there is only one homomorphism from any ring to the ring $\{0\}$. Thus, as required, $(X \sqcup Y)(\{0\})$ is a singleton!

Case where R has only trivial idempotents

Now, if R is a ring where the *only* idempotents are 0 and 1 with $1 \neq 0$, then a homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ has the property that exactly one of the following holds:

- $f(e_X) = 1$ and $f(e_Y) = 0$
- $f(e_X) = 0$ and $f(e_Y) = 1$

It follows that if R is a ring with 0 and 1 as the only idempotents, and $1 \neq 0$ then

Hom
$$(\mathcal{O}(X) \oplus \mathcal{O}(Y), R) =$$
 Hom $(\mathcal{O}(X), R) \sqcup$ Hom $(\mathcal{O}(Y), R)$

Here the first term on the right is identified with maps that are 0 on $\mathcal{O}(Y)$ and the second term on the right is identified with maps that are 0 on $\mathcal{O}(X)$. So in this case,

$$X(R) \sqcup Y(R) = (X \sqcup Y)(R)$$

Exercise: How did we use $1 \neq 0$?

Case where R has non-trivial idempotents

When R does have a non-trivial idempotent e_1 (i.e. e_1 and $e_2 = 1 - e_1$ are both non-zero), the situation becomes more complicated.

Note that even in this case, the previous calculations show that

$$X(R) \sqcup Y(R) \ \subset (X \sqcup Y)(R)$$

In addition to homomorphisms on the left-hand side, we can have a ring homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ with $f(e_X) = e_1$ and $f(e_Y) = e_2$. We can also have a ring homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ with $f(e_X) = e_2$ and $f(e_Y) = e_1$.

Note that e_1 and e_2 give a decomposition of identity into a pair of orthogonal idempotents in the ring R. It follows that $R_{e_1} = Re_1$ and $R_{e_2} = Re_2$. Note also that $R = Re_1 \oplus Re_2$ and $R_{e_1e_2} = \{0\}$.

A homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ such that $f(e_X) = e_1$ gives rise to elements $f_1 \in \text{Hom}(\mathcal{O}(X), Re_1)$ and $f_2 \in \text{Hom}(\mathcal{O}(Y), Re_2)$. So we have

$$f_1 \in X(R_{e_1}) \subset (X \sqcup Y)(R_{e_1})$$

$$f_2 \in Y(R_{e_2}) \subset (X \sqcup Y)(R_{e_2})$$

Moreover, their images in $(X \sqcup Y)(R_{e_1e_2})$ are the same since this is a *singleton*.

The existence of an element f in $(X \sqcup Y)(R)$ in this case is an application of the *sheaf condition*! This shows us the importance of the sheaf condition.

Exercise: Show that disjoint union $X \coprod Y$ as functors does not satisfy the sheaf condition.

Complement

Given a subset V of a set U, we can form the complement $U \setminus V$.

However, if G is a subfunctor F of functors **CRing** to **Set**, then we do not have a functor that associates $F(R) \setminus G(R)$ to the ring R for every ring R. The reason is that for some ring homomorphism $f : R \to S$, some element of $F(R) \setminus G(R)$ may have image in G(S) under F(f).

For example, consider a \mathbb{Z} -affine scheme Y = A(x; x) as a subscheme of \mathbb{A}^1 and the ring homomorphism $f : \mathbb{Z} \to \mathbb{Z}/\langle 5 \rangle$. We have the \mathbb{Z} -point of \mathbb{A}^1 given by the homomorphism $\mathbb{Z}[x] \to \mathbb{Z}$ that maps x to 5 whose image under f is in $Y(\mathbb{Z}/\langle 5 \rangle)$.

More generally, if we want to have a notion of the complement of $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ in \mathbb{A}^p , we have to ensure that an *R*-point in the "complement of X" should go to an *S*-point in the "complement of X" for *every* ring homomorphism $f: R \to S$.

Now an *R*-point of \mathbb{A}^p can be seen as a ring homomorphism $\mathbf{a} : \mathbb{Z}[x_1, \ldots, x_p] \to R$. Saying that it is in the complement of X(R) means that the image ideal $I = \mathbf{a} \langle f_1, \ldots, f_q \rangle R$ is not the zero ideal in *R*.

The above condition, means we want the ideal I in R such that its image f(I)S under every homomorphism $f: R \to S$ is a non-zero ideal. Since we can always take S = R/I, this appears to be problematic!

Now, we already decided that maps from to any space is a singleton whereas $\mathbb{A}^{p}(\{0\}) - X(\{0\})$ is empty! Thus, we can allow the the image of I to be $\{0\}$ in the case of $f: \mathbb{R} \to \{0\}$.

So one way to state the above condition is that I = R. Now, the image ideal f(I)S under any homomorphism $f: R \to S$ also satisfies f(I)S = S.

Quasi-affine \mathbb{Z} -scheme

A quasi-affine \mathbb{Z} -scheme is denoted $A(x_1, \ldots, x_p; f_1, \ldots, f_q; g_1, \ldots, g_r)$.

We conceptually think of this as the locus of points in \mathbb{A}^p which satisfy the equations $f_i = 0$ for $i - 1, \ldots, q$ and $\langle g_1, \ldots, g_r \rangle$ "do not all vanish".

To the quasi-affine scheme $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q; g_1, \ldots, g_r)$ we associate a functor of points X_i from **CRing** to **Set**. This associates to a ring R, the set

$$X_{.}(R) = \{ \mathbf{a} = (a_1, \dots, a_p) \mid \langle f_1(\mathbf{a}), \dots, f_q(\mathbf{a}) \rangle_R = \langle 0 \rangle_R$$

and $\langle g_1(\mathbf{a}), \dots, g_r(\mathbf{a}) \rangle_R = R \}$

One special case is when r = 1. In that case, the requirement that $\langle g_1(\mathbf{a}) \rangle = R$ is the same as the requirement that $g_1(\mathbf{a})$ is a unit in R. Hence, we see that

$$A(x_1, \dots, x_p; f_1, \dots, f_q; g_1, \dots, g_r) = A(x_1, \dots, x_p, u; f_1, \dots, f_q, ug_1 - 1;)$$

which is a \mathbb{Z} -affine scheme.

In general, given $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q; g_1, \ldots, g_r)$, there *need not* be a \mathbb{Z} -affine scheme Y and a natural transformation $X \to Y$ which is a bijection on R-points for all R. For example, we can see this for $\mathbb{A}^2 \setminus \{(0,0)\}$ as we shall see.