Will please elaborate again why Blue color equality of morphism in the attached note hold?

Note that \mathcal{O} is a functor \mathbb{Z}-Rf to CRing. $\left.X \rightarrow A^{1}(x) D(x)\right)$
We also have the "forgetful functor" CRing to Set that "forgets" the ring structure. It associates a ring to the underlying set and a ring homomorphism to the underlying set map.

For a \mathbb{Z}-Affine scheme X, then we have

So \mathcal{O} can be indent $\mathbb{A l e d}$ with $A(x ;)!$! 1

Rriyminz

$$
\begin{aligned}
\mathbb{Z}_{1} & \rightarrow R \\
1 & \rightarrow 1
\end{aligned}
$$

$x —>a$

Supptre $a_{i}=b_{i} / n_{i}^{n} \in R_{u_{i}}$

$$
g_{i, j}\left(a_{i}\right)=g_{j, i}\left(a_{j}\right) V_{i, j}
$$

Then \exists ! $a \in R$ s.t. $f_{i}(\mu)=a_{i}$

$$
R \rightarrow\left(g_{i j,},-g_{j i j}\right)_{i i_{j}} R_{i} \theta_{i} R_{i_{j}} \rightarrow R_{n i n_{j}} i k j
$$

$$
-\left(a_{i}, p_{j}\right) \rightarrow g_{i j}\left(a_{i}\right)-g_{j i}(g)
$$

$$
a_{1} \rightarrow\left(f_{i}(4)\right.
$$

$\left.\left(a_{i}\right) \longmapsto\left(g_{i j}\right)\left(a_{i}\right)-g_{j i}\left(c_{j j}\right)\right)_{i j}$

$$
\begin{aligned}
& a \in R \quad a \rightarrow a_{i}=f_{i}(a) \quad a / 1-a / 1 \\
& \left(a_{i} \in R_{u_{i}}\right) \\
& g_{i, j}\left(a_{i}\right)=g_{j i}\left(a_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(h_{i}\right): A \rightarrow R_{u_{j}} \\
& g_{i, j}\left(h_{i}\right)=g_{j, i}\left(h_{j}\right) \\
& \text { J! } h: A \rightarrow R \quad A+h_{i}=f_{i} \cdot h \\
& 0 \rightarrow B \rightarrow(\rightarrow D \\
& 0 \rightarrow \operatorname{Hom}(A, B) \rightarrow \operatorname{Hm}(\beta, C) \rightarrow \operatorname{Han}(A, D) \\
& A \rightarrow R \text { is a ring hominrphion. }
\end{aligned}
$$

Griphe.

Grind
What i the bu?
pathij - lonjijom?

$$
\begin{aligned}
& x=A\left(x_{1}, \ldots, x_{n} ; f_{1}, \ldots, f_{n}\right) \\
& g: x \rightarrow A^{1} \\
& \vec{V}_{g}=\left\{A\left(x_{1} \ldots, x, j, \ldots, f_{i}^{\prime \prime} g\right) c X\right. \\
& z_{\text {j i }} c_{\text {cha }}=x \\
& x_{g}=A\left(x_{1, \ldots}, x ; f_{1, t}, t, j\right)=" x(z \\
& \text { it is "gan" in } X \\
& =A\left(x_{1}, x_{i} ; f \ldots, \ldots, n j-1\right) \\
& R=O(x) \quad O\left(x_{j}\right)=R_{g} \quad y_{1}-g_{1} \\
& R \rightarrow R_{\mu_{i}} \text { ハnos } X_{i} \rightarrow X \text { opusises } \\
& \left\langle n_{1, \ldots}, n_{k}\right\rangle=1 \quad \cup \cup x_{i}^{\prime \prime}=x^{i} X \\
& \text { Cons of } x \text { by pess. } \\
& i_{\pi}^{\pi_{n}}\left|\Rightarrow \lambda_{i} / x_{i} A x_{j}=1_{j}\right|_{x_{i} \wedge x_{j}}
\end{aligned}
$$

Mathifors
XI pata; opext
An sistinanco of

$$
C \mathbb{R}^{n}
$$

\square

$$
X=4+\frac{d}{2}
$$

obtaind by pita; affin sonme.
(Srulig.tin
gion a cor liectic of r-se whiaf form - busis forthe

Kirti

Does patrejaimply
that $n_{1 ., ., n_{n}}$ gancti unit ideal?

Sundari:- $\quad(N, \geq) \underset{i d}{E}(N, \forall)$

$$
\begin{aligned}
& (\mathbb{N}, \geqslant) \xrightarrow[G]{i d+2}(N, \geqslant) \\
& F \rightarrow G_{M}=n+2 \\
& F(n)=n \rightarrow n+2 \quad G(n) \rightarrow F(n) \\
& (n+2)-2 n \text {. } \\
& \text { ordes } \leq
\end{aligned}
$$

$\sum \quad \operatorname{dbjecct}_{5} d_{5}$

- meg use - inentiof.

$$
S P G
$$

\qquad
Categoiis x Fumdros \rightarrow dogii, TCS

