Categories and Functors

We explore the notion of the category of \mathbb{Z} -affine schemes and functors on it.

\mathbb{Z} -affine schemes and morphisms

We introduced the notion of a \mathbb{Z} -affine scheme.

Z-affine scheme: A Z-affine scheme is of the form $A(x_1, \ldots, x_p; f_1, \cdots, f_q)$ where f_1, \ldots, f_q are polynomials in the variables x_1, \ldots, x_p with coefficients in the ring Z of integers.

To an affine scheme $X = A(x_1, \ldots, x_p; f_1, \cdots, f_q)$ we associated the commutative ring:

$$\mathcal{O}(X) = \frac{\mathbb{Z}[x_1, \dots, x_p]}{\langle f_1, \dots, f_q \rangle},$$

R-points of X: Give an affine scheme X and a commutative ring R, an R-point of X is a ring homomorphism $f : \mathcal{O}(X) \to R$.

A morphism of schemes can now be defined.

Morphism of \mathbb{Z} -affine schemes: Given \mathbb{Z} -affine schemes X and Y, a morphism $f: X \to Y$ is an $\mathcal{O}(X)$ -point of Y.

We usually denote the corresponding ring homomorphism as $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$ to indicate that it is in the *opposite* direction of the morphism of schemes.

We denote the collection of morphisms as Mor(X, Y) and so we have

$$Mor(X, Y) = Hom(\mathcal{O}(Y), \mathcal{O}(X))$$

where the latter is the collection of ring homomorphisms.

The important point to remember is the following.

All properties of $\mathbbm{Z}\text{-affine}$ schemes are understood in terms of the above definitions.

More specifically, the notion of \mathbb{Z} -affine schemes and morphism between them determine a category.

Sets with structure

The definition we have given of a \mathbb{Z} -affine scheme is quite *different* from some of the definitions encountered elsewhere.

A typical (20-th century) mathematical definition is that of a "set with structure". For example:

Group: A group is a set G with an element 1_G and operations μ_G (multiplication) and ι_G (inverse) that satisfy some properties.

Topological space: A topological space is a set X with a collection τ_X of subsets (open subsets), that satisfy some properties.

... and so on.

We then define the associated "morphisms", or distinctive set maps as those that "preserve" the structure.

- **Group Homomorphism:** Given groups G and H a group homomorphism is a set map $f : G \to H$ such that $f(1_G) = 1_H$, $f \circ \iota_G = \iota_H \circ f$ and $f \circ \mu_G = \mu_H \circ (f, f)$.
- **Continuous Map:** Given topological spaces X and Y a continuous map is a set map $f: X \to Y$ such that $f^{-1}(U) \in \tau_X$ if $U \in \tau_Y$.

 \dots and so on.

Categorical viewpoint

Category theory takes a different point of view:

Mathematical structure is *determined* by morphisms; the "internal" set-theoretic structure of the objects is less (or not!) relevant.

In a category we have objects and morphisms. Let us denote objects by capital letters X, Y, Z, \ldots and morphisms by lower-case letters f, g, h, \ldots

- For every object X, we have an identity morphism $i_X : X \to X$.
- Given a morphism $f: X \to Y$ and a morphism $g: Y \to Z$, we can compose to get $g \circ f: X \to Z$.
- Given a morphism $f: X \to Y$ we have $i_Y \circ f = f = f \circ i_X$. In other words, the identity morphisms act as identity with respect to composition.
- Given morphisms $f: W \to X$, $g: X \to Y$ and $h: Y \to Z$, we have the associativity of composition. $h \circ (g \circ f) = (h \circ g) \circ f$.

Note that we can make now make sense of some "standard" notions.

- **Isomorphism:** A morphism $f: X \to Y$ is an isomorphism if there is a morphism $g: Y \to X$ such that $g \circ f = i_X$ and $f \circ g = i_Y$. This g is called an inverse of f in this case.
- **Exercise:** Check that if $h: Y \to X$ is such that $h \circ f = i_X$, then h = g. This shows that the inverse is unique.
- **Exercise:** Check that if $f: X \to Y$, $g: Y \to X$ and $h: Y \to X$ are such that $g \circ f = i_X$ and $f \circ h = i_Y$, then g = h and all of these morphisms are isomorphisms.

Automorphism: An isomorphism $f: X \to X$ is called an *automorphism* of X.

Clearly, i_X is an automorphism. Moreover, the composition of automorphisms is an automorphism.

In many cases, the morphisms from X to Y form a set which is denoted by Mor(X, Y). In such cases we see that the subset Aut(X) of Mor(X, X) which consists of automorphisms, forms a group.

Standard Examples

- There is a category **Set** whose objects are sets and morphisms are set maps.
- There is a category **Gp** whose objects are groups and morphisms are group homomorphisms.
- There is a category **Top** whose objects are topological spaces and morphisms are continuous maps.
- There is a category **Ring** whose objects are rings with identity and morphisms are ring homomorphisms.

All these categories are "big" in the sense that objects are not members of a set. (Russell's paradox prevents us from talking about the set of all groups.) However, morphisms between two chosen objects *do* form a set in all these cases.

Other examples

- There is a category F whose objects are the sets [n] = {0,...,n-1} for a non-negative integer n (here [0, 0-1] is interpreted as the empty set); a morphism f: [n] → [m] is just a map of (finite) sets.
- Given a field F, there is a category \mathcal{V}_F whose objects are the sets F^n and a morphism $f: F^n \to F^m$ is an $m \times n$ matrix.

Note that in both these categories, the objects form a *countable* set. In the second case, if F is an uncountable field, then morphisms are also uncountable. Otherwise, the morphisms also form a countable set!

Secondly, note that, in some sense, the category \mathcal{F} is *essentially* the category of *finite* sets. (However, Russell's paradox also prevents us from talking about the set of all finite sets!)

Similarly, the category \mathcal{V}_F is *essentially* the category of finite dimensional vector spaces.

\mathcal{FPR}

Consider the category \mathcal{FPR} whose objects are Finitely Presented commutative Rings:

$$\frac{\mathbb{Z}[x_1,\ldots,x_p]}{\langle f_1,\ldots,f_q \rangle}$$

where x_1, \ldots, x_p are treated as "dummy" variables as seen earlier, and morphisms are ring homomorphisms.

By standard results in ring theory, we see that morphisms in \mathcal{FPR} satisfy the properties expected for a category

Note that the category \mathcal{FPR} has countably many objects (since we treat the variables as "dummy" using the semi-group approach to polynomials). Moreover, since a morphism of such rings is *determined* by the images of the variables, these are also countable.

$\mathbb{Z}\text{-Aff}$

We have the category \mathbb{Z} -Aff whose objects are \mathbb{Z} -affine schemes and morphisms are morphisms of \mathbb{Z} -affine schemes as defined above.

One can directly check the properties of morphisms as listed above. However, we will reduce this question to one we "know".

Opposite Category

Given a category C, we consider the category C^{opp} whose objects are the same as the objects of C and morphisms are also the same as the morphisms of C except that we reverse the arrows!

To clarify, given an object X of \mathcal{C} , let X^{opp} denote the same object when considered in \mathcal{C}^{opp} . Given a morphism $f: X \to Y$ in \mathcal{C} , we denote by f^{opp} : $Y^{\text{opp}} \to X^{\text{opp}}$, the corresponding morphism in \mathcal{C}^{opp} . We define $i_{X^{\text{opp}}} = (i_X)^{\text{opp}}$.

One easily checks that morphisms in $\mathcal{C}^{\mathrm{opp}}$ satisfy the properties expected for a category.

\mathbb{Z} -Aff is a category

We see that if X is a **Z**-affine scheme, then $\mathcal{O}(X)$ is an object in \mathcal{FPR} . Conversely, given an object $\mathbb{Z}[x_1, \ldots, x_p]/\langle f_1, \ldots, f_q \rangle$ in \mathcal{FPR} , we have the associated \mathbb{Z} -affine scheme $A(x_1, \ldots, x_p; f_1, \ldots, f_q)$.

We have seen that a morphism $f : X \to Y$ of **Z**-affine schemes corresponds *precisely* to a ring homomorphism $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$.

It follows that \mathbb{Z} -Aff is \mathcal{FPR}^{opp} . In particular, we see immediately that ring theory has *already* proved that morphisms in \mathbb{Z} -Aff satisfy the properties expected for a category.

This may be seen as the basis of the statement:

Affine algebraic geometry is the same as commutative algebra.

In this course, *schemes* will be the primary concept and thus we will look at everything through the "prism" of \mathbb{Z} -Aff.

Small Categories

When the objects of a category form a set C_0 and the morphisms C_1 also form a set, we say that the category is *small*.

In this case, we can see that a category can itself be written as "a set with structure".

A small category is:

- a set C_0 of objects
- a set C_1 of morphisms
- a map $i: C_0 \to C_1$ that takes an object X to its identity morphism
- maps $s, e: C_1 \to C_0$ that take a morphism to the "domain" and range" of the morphism.
- the subset C_2 of $C_1 \times C_2$ consisting of all pairs (g, f) such that e(f) = s(g) (i.e. these are composable morphisms.
- a map $\circ: C_2 \to C_1$ that gives the composition of morphisms.

Exercise: Write down the properties of these maps that are required to define a (small) category.

Note that we actually *only* need the set C_1 as C_0 and C_2 can be determined from it. This leads to the "picture" of a small category as set of arrows which are "composable".

We can then the notion of a "map of categories that preserves the structure". Such a map is called a *functor* which we now define in greater generality.

Functors

Given categories \mathcal{C} and \mathcal{D} , a functor F from \mathcal{C} to \mathcal{D} :

- to an object X of C associates an object F(X) of D
- to a morphism $f: X \to Y$ of \mathcal{C} associates a morphism $F(f): F(X) \to F(Y)$ of \mathcal{D} .

such we have $F(i_X) = i_{F(X)}$ and $F(g \circ f) = F(g) \circ F(f)$.

Such a functor is sometimes called a *covariant* functor.

A functor from $\mathcal{C}^{\mathrm{opp}}$ to \mathcal{D} is called a *contravariant* functor from \mathcal{C} to \mathcal{D} .

A contravariant functor F associates to a morphism $f : X \to Y$ of C to a morphism $F(f) : F(Y) \to F(X)$ of \mathcal{D} .

Functor of points

One important type of functor is the "functor of points". Given a Z-affine scheme X we have seen that to each commutative ring R, we have associated a set X(R) of R-points of X. We now claim that this is a functor. To avoid confusion, let us denote this functor as X_{\perp} and define $X_{\perp}(R) = X(R)$.

Recall that there is a commutative ring $\mathcal{O}(X)$ associated with X so that there is a natural identification $X(R) = \text{Hom}(\mathcal{O}(X), R)$.

Hence, an element $\mathbf{a} \in X(R)$ is identified with a honomorphism $\mathbf{a} : \mathcal{O}(X) \to R$.

Given a ring homomorphism $h : R \to S$ we obtain (by composition) a homomorphism $h \circ \mathbf{a} : \mathcal{O}(X) \to S$. This is an element of X(S).

Hence, we see that $X_i(h)$ given by $\mathbf{a} \mapsto h \circ \mathbf{a}$ is a set map $X_i(R) \to X_i(S)$.

Exercise: With definitions as above check that X_{\perp} is a functor from **CRing** to **Set**.

The basic idea is that *general* schemes will be *other* such functors. In other words, thinking of a \mathbb{Z} -affine scheme X in terms of the functor X will allow us to define more general schemes.

The functor A^{\cdot}

In fact, given a commutative ring A, we can define a functor A^{\cdot} from **CRing** to **Set** as follows:

- For a ring we define A(R) = Hom(A, R). Note that Hom(A, R) is a set!
- For a ring homomorphism $h: R \to S$, we define $A^{\cdot}(h): A^{\cdot}(R) \to A^{\cdot}(S)$ by composition. Given $f: A \to R$ an element of $A^{\cdot}(R)$ we have $A^{\cdot}(h) = h \circ f: A \to S$ which is an element of $A^{\cdot}(S)$.

The associative property of composition and the right identity property of i_R show that this is a functor. We will see shortly how the left identity property of i_A gets used!

Note that X_{\cdot} is the same as the functor A^{\cdot} where $A = \mathcal{O}(X)$. This gives a proof that X_{\cdot} is a functor.

Natural transformations

Given functors F and G from C to D, we have the notion of a *natural transformation* $\eta: F \to G$.

This associates to each object X in C a morphism $\eta(X) : F(X) \to G(X)$ in \mathcal{D} which has the property that if $f : X \to Y$ is a morphism in \mathcal{C} , then $\eta(Y) \circ F(f) = G(f) \circ \eta(X)$.

In other words, the following diagram commutes

$$F(X) \stackrel{\eta(X)}{\to} G(X)$$

$$F(f) \downarrow \qquad \downarrow G(f)$$

$$F(Y) \stackrel{\eta(Y)}{\to} G(Y)$$

Morphisms as natural transformations

Given X and Y are Z-affine schemes, a morphism $f: X \to Y$ corresponds to a ring homomorphism $f^*: \mathcal{O}(Y) \to \mathcal{O}(X)$.

For a ring R, given $\mathbf{a} : \mathcal{O}(X) \to R$, we can compose to get

$$\mathbf{a} \circ f^* : \mathcal{O}(Y) \to R$$

Thus, we have $\tilde{f}(R) : X(R) \to Y(R)$ for each ring R defined by $\tilde{f}(\mathbf{a}) = \mathbf{a} \circ f^*$ considered as an element of Y(R).

Exercise: Check that \tilde{f} is a natural transformation $X_{\cdot} \to Y_{\cdot}$ where these are considered as functors **CRing** to **Set**.

Yoneda Lemma for CRing

More generally, suppose F is a functor from **CRing** to **Set**.

One important (and elementary) result identifies, natural transformations η : $A^{\cdot} \to F$ with elements f of F(A).

Given a natural transformation $\eta: A^{\cdot} \to F$, we note that $\eta(A): A^{\cdot}(A) \to F(A)$ is a set map.

Applying this set map to $i_A \in A^{\cdot}(A)$ we have an element $f = \eta(A)(i_A) \in F(A)$ associated with η .

Conversely, given $f \in F(A)$, we define $\eta : A \to F$ as follows. Given an object B in **CRing** and $g \in A \cdot (B) = \text{Hom}(A, B)$, the fact that F is a functor gives $F(g) : F(A) \to F(B)$. We then define $\eta(Y)(g) = F(g)(f)$.

Exercise: Check that η as defined above is a natural transformation.

In particular, we note that natural transformations $A^{\cdot} \to B^{\cdot}$ can be identified with $B^{\cdot}(A) = \text{Hom}(B, A)$. We can use $f^{\cdot} : A^{\cdot} \to B^{\cdot}$ to denote the natural transformation associated with a ring homomorphism $f : B \to A$.

We can apply this to the functors X = A where $A = \mathcal{O}(X)$ and Y = B where $B = \mathcal{O}(Y)$. It follows that a natural transformation $X \to Y$ can be identified with a morphism $X \to Y$. (Note the *double* reversal!)

The category \mathbb{Z} -Aff can be seen as a category of functors **CRing** to **Set** with morphisms between functors being defined as natural transformations.

Yoneda Lemma in general. One can observe that there is nothing special about CRing being used in the above result.

Given a category \mathcal{C} for which, morphisms between a pair of objects X and Y form a set Mor(X, Y). For each object C of \mathcal{C} we define a functor C^{\cdot} from \mathcal{C} to **Set** as follows:

- For an object X, we define C(X) = Mor(C, Y).
- For a morphism $f : X \to Y$, we define $C^{\cdot}(f) : C^{\cdot}(X) \to C^{\cdot}(Y)$ by composition of morphisms.

Now consider any functor F from C to **Set**.

There is a natural identification between natural transformations $\eta : C \to F$ and elements of F(C) which sends η to $\eta(C)(i_C)$.

Conversely, given f in F(C), we define $\eta : C \to F$ as follows. Given g in $C(X) = \operatorname{Mor}(C, X)$, we have $F(g) : F(C) \to F(X)$ since F is a functor. Hence, we have F(g)(f) in F(X). We use this to define $\eta(X)(g) = F(g)(f)$.

Conclusion

- We introduced the categories, functors and natural transformations.
- We provided some important examples of categories.
- In particular, we introduced the category Z-Aff of Z-Affine schemes.
- We also showed that a Z-Affine scheme can be seen as a functor **CRing** to **Set**.
- The Yoneda lemma identifies morphisms between schemes as natural transformation of functors.
- This points the way to **extending** the category Z-Aff to a bigger category of such functors.