
Categories and Functors
We explore the notion of the category of Z-affine schemes and functors on it.

Z-affine schemes and morphisms
We introduced the notion of a Z-affine scheme.

Z-affine scheme: A Z-affine scheme is of the form A(x1, . . . , xp; f1, · · · , fq)
where f1, . . . , fq are polynomials in the variables x1, . . . , xp with coefficients
in the ring Z of integers.

To an affine scheme X = A(x1, . . . , xp; f1, · · · , fq) we associated the commutative
ring:

O(X) = Z[x1, . . . , xp]
〈f1, . . . , fq〉

,

R-points of X: Give an affine scheme X and a commutative ring R, an R-point
of X is a ring homomorphism f : O(X)→ R.

A morphism of schemes can now be defined.

Morphism of Z-affine schemes: Given Z-affine schemes X and Y , a mor-
phism f : X → Y is an O(X)-point of Y .

We usually denote the corresponding ring homomorphism as f∗ : O(Y )→ O(X)
to indicate that it is in the opposite direction of the morphism of schemes.

We denote the collection of morphisms as Mor(X,Y ) and so we have

Mor(X,Y ) = Hom(O(Y ),O(X))

where the latter is the collection of ring homomorphisms.

The important point to remember is the following.

All properties of Z-affine schemes are understood in terms of the
above definitions.

More specifically, the notion of Z-affine schemes and morphism between them
determine a category.

Sets with structure
The definition we have given of a Z-affine scheme is quite different from some of
the definitions encountered elsewhere.

A typical (20-th century) mathematical definition is that of a “set with structure”.
For example:

Group: A group is a set G with an element 1G and operations µG (multiplica-
tion) and ιG (inverse) that satisfy some properties.
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Topological space: A topological space is a set X with a collection τX of
subsets (open subsets), that satisfy some properties.

. . . and so on.

We then define the associated “morphisms”, or distinctive set maps as those that
“preserve” the structure.

Group Homomorphism: Given groups G and H a group homomorphism
is a set map f : G → H such that f(1G) = 1H , f ◦ ιG = ιH ◦ f and
f ◦ µG = µH ◦ (f, f).

Continuous Map: Given topological spaces X and Y a continuous map is a
set map f : X → Y such that f−1(U) ∈ τX if U ∈ τY .

. . . and so on.

Categorical viewpoint
Category theory takes a different point of view:

Mathematical structure is determined by morphisms; the “internal”
set-theoretic structure of the objects is less (or not!) relevant.

In a category we have objects and morphisms. Let us denote objects by capital
letters X,Y, Z, . . . and morphisms by lower-case letters f, g, h, . . ..

• For every object X, we have an identity morphism iX : X → X.

• Given a morphism f : X → Y and a morphism g : Y → Z, we can compose
to get g ◦ f : X → Z.

• Given a morphism f : X → Y we have iY ◦ f = f = f ◦ iX . In other words,
the identity morphisms act as identity with respect to composition.

• Given morphisms f : W → X, g : X → Y and h : Y → Z, we have the
associativity of composition.h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Note that we can make now make sense of some “standard” notions.

Isomorphism: Amorphism f : X → Y is an isomorphism if there is a morphism
g : Y → X such that g ◦ f = iX and f ◦ g = iY . This g is called an inverse
of f in this case.

Exercise: Check that if h : Y → X is such that h ◦ f = iX , then h = g. This
shows that the inverse is unique.

Exercise: Check that if f : X → Y , g : Y → X and h : Y → X are such that
g ◦ f = iX and f ◦ h = iY , then g = h and all of these morphisms are
isomorphisms.

Automorphism: An isomorphism f : X → X is called an automorphism of X.

Clearly, iX is an automorphism. Moreover, the composition of automorphisms
is an automorphism.
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In many cases, the morphisms from X to Y form a set which is denoted by
Mor(X,Y ). In such cases we see that the subset Aut(X) of Mor(X,X) which
consists of automorphisms, forms a group.

Standard Examples

• There is a category Set whose objects are sets and morphisms are set
maps.

• There is a category Gp whose objects are groups and morphisms are group
homomorphisms.

• There is a category Top whose objects are topological spaces and mor-
phisms are continuous maps.

• There is a category Ring whose objects are rings with identity and mor-
phisms are ring homomorphisms.

All these categories are “big” in the sense that objects are not members of a
set. (Russell’s paradox prevents us from talking about the set of all groups.)
However, morphisms between two chosen objects do form a set in all these cases.

Other examples

• There is a category F whose objects are the sets [n] = {0, . . . , n− 1} for a
non-negative integer n (here [0, 0− 1] is interpreted as the empty set); a
morphism f : [n]→ [m] is just a map of (finite) sets.

• Given a field F , there is a category VF whose objects are the sets Fn and
a morphism f : Fn → Fm is an m× n matrix.

Note that in both these categories, the objects form a countable set. In the
second case, if F is an uncountable field, then morphisms are also uncountable.
Otherwise, the morphisms also form a countable set!

Secondly, note that, in some sense, the category F is essentially the category of
finite sets. (However, Russell’s paradox also prevents us from talking about the
set of all finite sets!)

Similarly, the category VF is essentially the category of finite dimensional vector
spaces.

FPR

Consider the category FPR whose objects are Finitely Presented commutative
Rings:

Z[x1, . . . , xp]
〈f1, . . . , fq〉

where x1, . . . , xp are treated as “dummy” variables as seen earlier, and morphisms
are ring homomorphisms.
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By standard results in ring theory, we see that morphisms in FPR satisfy the
properties expected for a category

Note that the category FPR has countably many objects (since we treat the
variables as “dummy” using the semi-group approach to polynomials). Moreover,
since a morphism of such rings is determined by the images of the variables,
these are also countable.

Z-Aff

We have the category Z-Aff whose objects are Z-affine schemes and morphisms
are morphisms of Z-affine schemes as defined above.

One can directly check the properties of morphisms as listed above. However,
we will reduce this question to one we “know”.

Opposite Category

Given a category C, we consider the category Copp whose objects are the same as
the objects of C and morphisms are also the same as the morphisms of C except
that we reverse the arrows!

To clarify, given an object X of C, let Xopp denote the same object when
considered in Copp. Given a morphism f : X → Y in C, we denote by fopp :
Y opp → Xopp, the corresponding morphism in Copp. We define iXopp = (iX)opp.

One easily checks that morphisms in Copp satisfy the properties expected for a
category.

Z-Aff is a category

We see that ifX is a Z-affine scheme, thenO(X) is an object in FPR. Conversely,
given an object Z[x1, . . . , xp]/〈f1, . . . , fq〉 in FPR, we have the associated Z-
affine scheme A(x1, . . . , xp; f1, . . . , fq).

We have seen that a morphism f : X → Y of Z-affine schemes corresponds
precisely to a ring homomorphism f∗ : O(Y )→ O(X).

It follows that Z-Aff is FPRopp. In particular, we see immediately that ring
theory has already proved that morphisms in Z-Aff satisfy the properties expected
for a category.

This may be seen as the basis of the statement:

Affine algebraic geometry is the same as commutative algebra.

In this course, schemes will be the primary concept and thus we will look at
everything through the “prism” of Z-Aff.
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Small Categories

When the objects of a category form a set C0 and the morphisms C1 also form a
set, we say that the category is small.

In this case, we can see that a category can itself be written as “a set with
structure”.

A small category is:

• a set C0 of objects
• a set C1 of morphisms
• a map i : C0 → C1 that takes an object X to its identity morphism
• maps s, e : C1 → C0 that take a morphism to the “domain” and range" of

the morphism.
• the subset C2 of C1×C2 consisting of all pairs (g, f) such that e(f) = s(g)

(i.e. these are composable morphisms.
• a map ◦ : C2 → C1 that gives the composition of morphisms.

Exercise: Write down the properties of these maps that are required to define
a (small) category.

Note that we actually only need the set C1 as C0 and C2 can be determined
from it. This leads to the “picture” of a small category as set of arrows which
are “composable”.

We can then the notion of a “map of categories that preserves the structure”.
Such a map is called a functor which we now define in greater generality.

Functors
Given categories C and D, a functor F from C to D:

• to an object X of C associates an object F (X) of D
• to a morphism f : X → Y of C associates a morphism F (f) : F (X)→ F (Y )

of D.

such we have F (iX) = iF (X) and F (g ◦ f) = F (g) ◦ F (f).

Such a functor is sometimes called a covariant functor.

A functor from Copp to D is called a contravariant functor from C to D.

A contravariant functor F associates to a morphism f : X → Y of C to a
morphism F (f) : F (Y )→ F (X) of D.

Functor of points

One important type of functor is the “functor of points”. Given a Z-affine scheme
X we have seen that to each commutative ring R, we have associated a set X(R)
of R-points of X. We now claim that this is a functor. To avoid confusion, let
us denote this functor as X. and define X.(R) = X(R).
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Recall that there is a commutative ring O(X) associated with X so that there
is a natural identification X(R) = Hom(O(X), R).

Hence, an element a ∈ X(R) is identified with a honomorphism a : O(X)→ R.

Given a ring homomorphism h : R→ S we obtain (by composition) a homomor-
phism h ◦ a : O(X)→ S. This is an element of X(S).

Hence, we see that X.(h) given by a 7→ h ◦ a is a set map X.(R)→ X.(S).

Exercise: With definitions as above check that X. is a functor from CRing to
Set.

The basic idea is that general schemes will be other such functors. In other
words, thinking of a Z-affine scheme X in terms of the functor X. will allow us
to define more general schemes.

The functor A.

In fact, given a commutative ring A, we can define a functor A. from CRing to
Set as follows:

• For a ring we define A.(R) = Hom(A,R). Note that Hom(A,R) is a set!
• For a ring homomorphism h : R → S, we define A.(h) : A.(R) → A.(S)

by composition. Given f : A→ R an element of A.(R) we have A.(h) =
h ◦ f : A→ S which is an element of A.(S).

The associative property of composition and the right identity property of iR
show that this is a functor. We will see shortly how the left identity property of
iA gets used!

Note that X. is the same as the functor A. where A = O(X). This gives a proof
that X. is a functor.

Natural transformations
Given functors F and G from C to D, we have the notion of a natural transfor-
mation η : F → G.

This associates to each object X in C a morphism η(X) : F (X) → G(X)
in D which has the property that if f : X → Y is a morphism in C, then
η(Y ) ◦ F (f) = G(f) ◦ η(X).

In other words, the following diagram commutes

F (X) η(X)→ G(X)
F (f) ↓ ↓ G(f)

F (Y ) η(Y )→ G(Y )
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Morphisms as natural transformations

Given X and Y are Z-affine schemes, a morphism f : X → Y corresponds to a
ring homomorphism f∗ : O(Y )→ O(X).

For a ring R, given a : O(X)→ R, we can compose to get

a ◦ f∗ : O(Y )→ R

Thus, we have f̃(R) : X(R)→ Y (R) for each ring R defined by f̃(a) = a ◦ f∗

considered as an element of Y (R).

Exercise: Check that f̃ is a natural transformation X. → Y. where these are
considered as functors CRing to Set.

Yoneda Lemma for CRing

More generally, suppose F is a functor from CRing to Set.

One important (and elementary) result identifies, natural transformations η :
A. → F with elements f of F (A).

Given a natural transformation η : A. → F , we note that η(A) : A.(A)→ F (A)
is a set map.

Applying this set map to iA ∈ A.(A) we have an element f = η(A)(iA) ∈ F (A)
associated with η.

Conversely, given f ∈ F (A), we define η : A. → F as follows. Given an object
B in CRing and g ∈ A.(B) = Hom(A,B), the fact that F is a functor gives
F (g) : F (A)→ F (B). We then define η(Y )(g) = F (g)(f).

Exercise: Check that η as defined above is a natural transformation.

In particular, we note that natural transformations A. → B. can be identified
with B.(A) = Hom(B,A). We can use f . : A. → B. to denote the natural
transformation associated with a ring homomorphism f : B → A.

We can apply this to the functors X. = A. where A = O(X) and Y. = B. where
B = O(Y ). It follows that a natural transformation X. → Y. can be identified
with a morphism X → Y . (Note the double reversal!)

The category Z-Aff can be seen as a category of functors CRing
to Set with morphisms between functors being defined as natural
transformations.

Yoneda Lemma in general. One can observe that there is nothing special
about CRing being used in the above result.

Given a category C for which, morphisms between a pair of objects X and Y
form a set Mor(X,Y ). For each object C of C we define a functor C . from C to
Set as follows:
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• For an object X, we define C .(X) = Mor(C, Y ) .
• For a morphism f : X → Y , we define C .(f) : C .(X) → C .(Y ) by

composition of morphisms.

Now consider any functor F from C to Set.

There is a natural identification between natural transformations η : C . → F
and elements of F (C) which sends η to η(C)(iC).

Conversely, given f in F (C), we define η : C . → F as follows. Given g in
C .(X) = Mor(C,X), we have F (g) : F (C)→ F (X) since F is a functor. Hence,
we have F (g)(f) in F (X). We use this to define η(X)(g) = F (g)(f).

Conclusion
• We introduced the categories, functors and natural transformations.
• We provided some important examples of categories.
• In particular, we introduced the category Z-Aff of Z-Affine schemes.
• We also showed that a Z-Affine scheme can be seen as a functor CRing

to Set.
• The Yoneda lemma identifies morphisms between schemes as natural

transformation of functors.
• This points the way to extending the category Z-Aff to a bigger category

of such functors.
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