## Solutions to Quiz 1

## Intersection

Given $\mathbb{P}(V)$ and $\mathbb{P}(W)$ are subspaces of $\mathbb{P}^{7}$ where $V$ has dimension 4 and $W$ has dimension 5.
What is the *minimum* dimension of their intersection?
(The word "minimum" was missing in the original question.)
Note that $V$ and $W$ are vector subspaces of $k^{7+1}=k^{8}$. Hence, the dimension of $V \cap W$ is at least $4+5-(7+1)=1$.
It follows that the minimum dimension of $\mathbb{P}(V) \cap \mathbb{P}(W)=\mathbb{P}(V \cap W)$ is 0 .
Note that the intersection is contained in $\mathbb{P}(V)$ so the dimension of this intersection is at most $4-1=3$. Partial credit was given for answers $1,2,3$.

## Join of spaces

Given that $\mathbb{P}(V)$ and $\mathbb{P}(W)$ meet in exactly one point in $\mathbb{P}^{10}$, where $V$ has dimension 2 and $W$ has dimension 3 .
What is the dimension of $\mathbb{P}(V+W)$ ?
Given that $\mathbb{P}(V) \cap \mathbb{P}(W)=\mathbb{P}(V \cap W)$ is a point, we see that $V \cap W$ is 1 dimensional.
It follows that $V+W$ has dimension $2+3-1=4$. Hence, $\mathbb{P}(V+W)$ has dimension 3.
Note that dimension of the ambient space $\mathbb{P}^{10}$ does not appear in the calculation!

## Multiple intersection

Given 4 linear subspaces of dimension 4 in $\mathbb{P}^{5}$ what is the $<\mathrm{em}>$ minimum $</ \mathrm{em}>$ dimension of their intersection?
A 4-dimensional subspace if $\mathbb{P}^{5}$ is given by a non-zero linear functional $f: k^{5+1} \rightarrow$ $k$. Thus, we are given 4 non-zero linear functionals $f_{1}, \ldots, f_{4}$ on $k^{6}$.

The dimension of their common intersection is least if they are linearly independent. In that case, the kernel $V$ of $k^{6} \rightarrow k^{4}$ given by the 4 -tuple $\left(f_{1}, ; f_{4}\right)$ has dimension 2.
It follows that the dimension of $\mathbb{P}(V)$ is 1 .

## Multiple join

Given 3 points in $\mathbb{P}^{3}$. What is the $<\mathrm{em}>$ maximum $</ \mathrm{em}>$ possible dimension of their join?

Each point is given by a 1 -dimensional subspace in $k^{3+1}$. Each such subspace is generated by a non-zero vector $v$. Thus, we are given 3 non-zero vectors $v_{1}, v_{2}, v_{3}$ in $k^{4}$.

The join of these is the projective linear subspace of the vector space $V$ spanned by these. The maximum possible dimension of $V$ is 3 .
It follows that the dimension of $\mathbb{P}(V)$ is 2 .

## Number of points

What is the number of points in the projective space $\mathbb{P}^{2}\left(\mathbb{F}_{3}\right)$ over the field $\mathbb{F}_{3}$ with 3 elements?
This is the projective space associated with the vector space $\mathbb{F}_{3}^{2+1}$ over the field $\mathbb{F}_{3}$.

This means we need to take non-zero vectors modulo multiplication by non-zero scalars. This action is faithful!
There are $3^{3}-1=26$ non-zero vectors and $3-1=2$ non-zero scalars.
Hence, there are $26 / 2=13$ points in this projective space.

