Solutions to Quiz 1

Intersection

Given $\mathbb{P}(V)$ and $\mathbb{P}(W)$ are subspaces of \mathbb{P}^7 where V has dimension 4 and W has dimension 5.

What is the *minimum* dimension of their intersection?

(The word "minimum" was missing in the original question.)

Note that V and W are vector subspaces of $k^{7+1} = k^8$. Hence, the dimension of $V \cap W$ is at least 4 + 5 - (7 + 1) = 1.

It follows that the minimum dimension of $\mathbb{P}(V) \cap \mathbb{P}(W) = \mathbb{P}(V \cap W)$ is 0.

Note that the intersection is contained in $\mathbb{P}(V)$ so the dimension of this intersection is *at most* 4 - 1 = 3. Partial credit was given for answers 1, 2, 3.

Join of spaces

Given that $\mathbb{P}(V)$ and $\mathbb{P}(W)$ meet in exactly one point in \mathbb{P}^{10} , where V has dimension 2 and W has dimension 3. What is the dimension of $\mathbb{P}(V+W)$?

Given that $\mathbb{P}(V) \cap \mathbb{P}(W) = \mathbb{P}(V \cap W)$ is a point, we see that $V \cap W$ is 1-dimensional.

It follows that V + W has dimension 2 + 3 - 1 = 4. Hence, $\mathbb{P}(V + W)$ has dimension 3.

Note that dimension of the ambient space \mathbb{P}^{10} does not appear in the calculation!

Multiple intersection

Given 4 linear subspaces of dimension 4 in \mathbb{P}^5 what is the minimum dimension of their intersection?

A 4-dimensional subspace if \mathbb{P}^5 is given by a non-zero linear functional $f: k^{5+1} \to k$. Thus, we are given 4 non-zero linear functionals f_1, \ldots, f_4 on k^6 .

The dimension of their *common* intersection is *least* if they are linearly independent. In that case, the kernel V of $k^6 \rightarrow k^4$ given by the 4-tuple $(f_1, ; f_4)$ has dimension 2.

It follows that the dimension of $\mathbb{P}(V)$ is 1.

Multiple join

Given 3 points in \mathbb{P}^3 . What is the $<\!\!em\!>\!maximum<\!/em\!>$ possible dimension of their join?

Each point is given by a 1-dimensional subspace in k^{3+1} . Each such subspace is generated by a non-zero vector v. Thus, we are given 3 non-zero vectors v_1, v_2, v_3 in k^4 .

The join of these is the projective linear subspace of the vector space V spanned by these. The maximum possible dimension of V is 3.

It follows that the dimension of $\mathbb{P}(V)$ is 2.

Number of points

What is the number of points in the projective space $\mathbb{P}^2(\mathbb{F}_3)$ over the field \mathbb{F}_3 with 3 elements?

This is the projective space associated with the vector space \mathbb{F}_3^{2+1} over the field \mathbb{F}_3 .

This means we need to take non-zero vectors modulo multiplication by non-zero scalars. This action is faithful!

There are $3^3 - 1 = 26$ non-zero vectors and 3 - 1 = 2 non-zero scalars.

Hence, there are 26/2 = 13 points in this projective space.