Linear varieties

In high-school we learn to solve systems of linear equations:

$$
\begin{aligned}
& a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, p} x_{p}=c_{1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, p} x_{p}=c_{2}
\end{aligned}
$$

$$
a_{q, 1} x_{1}+a_{q, 2} x_{2}+\cdots+a_{q, p} x_{p}=c_{q}
$$

where $a_{i, j}$ lie in a field k.
The solutions are found by converting this to the matrix form:

$$
\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, p} & c_{1} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, p} & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{q, 1} & a_{q, 2} & \ldots & a_{q, p} & c_{q}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p} \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Note the -1 which brings the column of c_{i} 's into the matrix!
One then performs row reduction on the matrix to reduce it into

