
Linear varieties
In high-school we learn to solve systems of linear equations:

a1,1x1 + a1,2x2 + · · ·+ a1,pxp = c1

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = c2
...

aq,1x1 + aq,2x2 + · · ·+ aq,pxp = cq

where ai ,j lie in a field k.

The solutions are found by converting this to the matrix form:
a1,1 a1,2 . . . a1,p c1
a2,1 a2,2 . . . a2,p c2
...

... . . . ...
...

aq,1 aq,2 . . . aq,p cq




x1
x2
...
xp
−1

 =


0
0
...
0


Note the −1 which brings the column of ci ’s into the matrix!

One then performs row reduction on the matrix to reduce it into
row-echelon form. One important aspect of this procedure is that it
does not change the solutions.

We observe the following with the row-echelon form:

1. We can eliminate all rows that are identically 0.

2. If there is any row that looks like (0 0 · · · 0 c) where c is
non-zero then the system of equations is inconsistent. There is
no solution in this case.

When (2) does not happen, we say that our system of linear
equations is consistent. In this case, there are solutions. What does
the locus of solutions look like?
Affine linear subspaces
Assuming that the system of equations is consistent, we are left
with r independent linear equations in p unknowns. The locus L of
solutions in kp is an affine linear subspace of dimension p − r .
Affine linear subspace of kp of dimension d : A subset L of kp

is an affine linear subspace of dimension d if there is a
d-dimensional vector subspace V of kp such that for
any point p in L, we have L = p + V .

In particular, a single non-trivial (not all coefficients of xi ’s are 0)
linear equation defines an affine linear subspace of dimension p − 1.
This is also called an affine hyperplane.
We can this think of L as an intersection of q affine hyperplanes
(only r of which give independent conditions).
When c 6= d , the hyperplanes Hc and Hd defined by their respective
equations

a1x1 + a2x2 + · · ·+ apxp = c
a1x1 + a2x2 + · · ·+ apxp = d

do not intersect. (We sometimes say that Hc and Hd are parallel.)
This leads to inconsistent systems as can be seen easily.

Exercise: Find a system of linear equations that are pairwise
consistent, but the totality of the system is
inconsistent. (Hint: We need p ≥ 3.)

Projective space
The occurrence of inconsistent equations is annoying as we would
like to treat all matrices of rank r on equal footing.
One solution is to add a new variable x0 and write the equations in
homogenised form as:

a1,1x1 + a1,2x2 + · · ·+ a1,pxp = c1x0

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = c2x0
...

aq,1x1 + aq,2x2 + · · ·+ aq,pxp = cqx0

Now, an “inconsistent” equation becomes simply 0 = cx0 (with
c 6= 0). Which just another non-trivial linear equation.
The solutions of this system of equations forms a vector subspace
W of kp+1. In fact, if the matrix above has rank r , then this
subspace has dimension p + 1− r .
One issue to note is that if (x0, x1, . . . , xp) is a solution, then so is
(dx0, dx1, . . . , dxp), for any element d in k. This should not be seen
as a “new” solution.
We thus introduce the projective space Pp(k) as the collection of all
non-zero tuples (x0, x1, . . . , xp) where two tuples are considered
equivalent if they are multiples of each other by an element of the
field. We denote the equivalence class by (x0 : x1 : · · · : xp).
Projective linear subspace of Pp(k): A projective linear subspace

of Pp(k) of dimension d is precisely the locus of
equivalence classes of points associated with a vector
subspace W of kp+1 of dimension d + 1; it is usually
denoted by P(W ) or P(W )(k).

Giving a basis for this (finite dimensional) vector space W gives a
bijection between P(W ) and Pd(k).
If W has dimension p, then P(W ) is a p − 1 dimensional linear
subspace called a projective hyperplane in Pp(k).

Hyperplane at “infinity”
If (x0 : x1 : · · · : xp) is a point of Pp(k) with x0 6= 0, then this is
equal to the point (1 : y1 : · · · : yp) where yi = xi/x0.
Thus, if H0 is the subspace of Pp(k) corresponding to the subspace
of kp+1 defined by x0 = 0, then its complement U0 = Pp(k) \ H0
can be identified with kp in a natural way.
This allows us to identify the solution locus L for a consistent
system of linear equations as studied above with U0 ∩ P(W ) where
W is the solution vector space for the homogenised system of
equations. Note that consistence ensures that W is not entirely
contained in the subspace defined by x0 = 0; in particular, this
means W is not the zero subspace!
Under a change of basis of kp+1, the equation x0 = 0 looses its
“special” significance. In fact, the general linear group operates
transitively on kp+1 \ {0}. As a consequence, we see that Pp(k)
carries a transitive action of this group as well.

Linear Algebra
The study of (projective) linear subspaces of projective space Pp(k)
is entirely captured by the study of vector subspaces of kp+1.
I A 1-dimensional vector subspace L of kp+1 gives a point P(L)

in Pp(k); it corresponds to a non-zero vector up to scalar
multiple.

I Distinct points of Pp(k) correspond to linearly independent
vectors.

I Given two vector subspaces V and W of kp+1, their
intersection V ∩W is a vector subspace. Thus P(V ) and P(W )
intersect in P(V ∩W ) provided this intersection is non-zero.

I The span V + W of vector subspaces gives P(V + W ) which is
the join of P(V ) and P(W ). It is is the smallest linear
subspace of Pp(k) that contains both of them.

I The join of two distinct points P(L) and P(M) (where L and M
are 1-dimensional vector subspaces) is P(L + M) which is a
1-dimensional linear subspace of Pp(k) (since L + M is a
2-dimensional vector subspace). It is called the projective line
joining the points. Two points determine a line.

I A non-zero linear functional on kp+1 determines, via its kernel,
a projective hyperplane in Pp(k). Conversely, such a hyperplane
determines a non-zero linear functional up to scalar multiple.

Such observations allow us to answer a number of simple questions
about linear spaces in projective space.

Lines meeting three lines in space
Question: Given three lines P(A), P(B) and P(C) in projective

space P3(k), is there a line that meets all three lines?
Note that A, B and C are two dimensional vector subspaces of k4.
We will assume that A ∩ B = B ∩ C = C ∩ A = {0} as the
“degenerate” cases where they meet in non-zero subspaces are easier.
Pick a non-zero vector v in C .
Since A ∩ C = {0}, we see that the vector space D = A + k · v is
3-dimensional. Similarly, E = B + k · v is also 3 dimensional.
Now D and E are vector subspaces of k4, so it follows that D ∩ E
has dimension at least 3 + 3− 4 = 2. Note that D ∩ E contains
k · v as well.
Suppose F is a 2-dimensional vector subspace of D ∩ E which
contains v .
We note that P(F ) is a line in P3(k) which contains P(k · v) which
is a point of P(C).
Moreover, A and F are a 2-dimensional subspaces of D which is a
3-dimensional space. It follows that A ∩ F has dimension at least
2 + 2− 3 = 1.
In other words, P(A) ∩ P(F ) = P(A ∩ F ) is non-empty. Similarly,
P(B) ∩ P(F ) is non-empty.
Thus, we see that P(F ) is a line in P3 that meets the lines P(A),
P(B) and P(C).
One can give the same argument a bit more “projectively”. First of
all we note two things about linear subspaces of Pp(k).
I Given a point P(L) of Pp(k) and a linear subspace P(W ) of

Pp(k) that does not contain P(L), the join (or span) P(L + W )
is a linear subspace of Pp(k) that has dimension 1 more than
that of P(W ) and it contains P(L) and P(W ).

I Given two subspaces P(V ) and P(W ) of Pp(k) of dimensions a
and b respectively; note that this means that dimensions of V
and W are a + 1 and b + 1 respectively. If a + b ≥ p, then
since the dimension V ∩W is at least
(a + 1) + (b + 1)− (p + 1) ≥ 1. Hence,
P(V ) ∩ P(W ) = P(V ∩W ) is a linear space of dimension at
least a + b − p; in particular, it is non-empty.

The above argument can be now be stated in terms of points, lines
and planes in P3.
I Given three distinct projective lines A, B and C in P3 we want

to find a projective line that meets all of them.
I Choose a point v of C that is not on A or B. (Since the lines

are distinct, this is possible!)
I Let D be the projective plane joining v and A. Similarly, let E

be the projective plane joining v and B.
I We note that F = D ∩ E in P3 has dimension at least

2 + 2− 3 = 1. On the other hand, since A and B are distinct
its dimension cannot be more than 1!

I It follows that F is a line in P3 that contains v . Hence F ∩ C is
non-empty.

I Since F and A are lines in the plane D, we see that F ∩A must
be non-empty as above. Similarly, F ∩ B is non-empty.

Lines meeting four lines in space
We see that there was a choice made in order to find the line F .
This was the choice of v in C . Thus, we may expect that there is a
“one parameter locus” of lines in space that meets a given collection
of 3 distinct lines. As a consequence we could expect to solve the
following:
Question: Given four lines A, B, C and D in projective space

P3(k), is there a line that meets all four lines?
The answer to this question turns out to depend on the field that
we are looking at! In particular, we map need to solve a quadratic
equation over the field k in order to find such a line.

Algebra is emergent!
Solving questions involving configurations of linear spaces forces us
to consider equations of higher degree. This can be seen as a
consequence of the fact that addition and multiplication of
coordinates arises out of configurations of lines as explained below.

Addition
Given the points p = (1 : 0 : a) and q = (1 : 0 : b) on the line A
given by x1 = 0. We will show that (1 : 0 : a + b) arises when we
examine the point of intersection of this line with another naturally
arising line. To do this we also need the “origin” o = (1 : 0 : 0)
which represents the identity element for addition. Note that
r = (0 : 0 : 1) is the “point at infinity” on the line A since the line B
given by x0 = 0 is the line at infinity on the plane.
I Consider the line C given by x1 = x0. The lines A, B and C

meet in the point r = (0 : 0 : 1). Since B is the line at infinity,
we may think of A and C as parallel lines.

I Consider the point s = (0 : 1 : 0) which is on B but not on A
or C . Since B is the line at infinity we can think of s as a
“direction” different from that of A and C (which are parallel).

I We have the line D which joins p and s. This is a line through
p “in the direction” given by s. This meets C in some point t.

I We have the line E which joins o and t. This meets B in some
point u. Then u represents the direction of the line E .

I We have the line F which joins q and u. This is the line
through q which is in the direction given by u. In other words,
it is through q and parallel to E . This meets C in some point v .

I We have the line G which joins v and s. This is the line
through v which is parallel to D. This meets A in some point
w .

The claim is that the coordinate of w is (1 : 0 : a + b). Let us work
this out!
1. The line D is given by x2 = ax0 since p and s satisfy this

equation.
2. This means that the point t is given by (1 : 1 : a).
3. Thus the line E is given by x2 = ax1 since o and t satisfy this

equation.
4. This means that the point u is given by (0 : 1 : a).
5. Thus the line F is given by x2 = ax1 + bx0 since u and q satisfy

this equation.
6. This means that the point v is given by (1 : 1 : a + b).
7. Thus the line G is given by x2 = (a + b)x0 since s and v satisfy

this equation.
8. This means that the point w is given by (1 : 0 : a + b) as

required.
Note that C could have been any line passing through the point r
other than A. In other words, it could be any line parallel to A.
Note that s could have been any point on B other than r . In other
words, it could be any direction other than that of A.

Multiplication
Given the points p = (1 : 0 : a) and q = (1 : 0 : b) on the line A
given by x1 = 0. We will show that (1 : 0 : a · b) arises when we
examine the point of intersection of this line with another naturally
arising line. To do this we also need the “origin” o = (1 : 0 : 0) and
the point i = (1 : 0 : 1 which represents the identity element for
multiplication. Note that r = (0 : 0 : 1) is the “point at infinity” on
the line A since the line B given by x0 = 0 is the line at infinity on
the plane.
I Consider the line C given by x2 = 0. The lines B and C meet

in the point s = (0 : 1 : 0).
I Consider the point t = (1 : 1 : 0) which is on C but not on A

or B.
I We have the line D that joins i and t. This meets the line B at

a point u.
I We have the line E that joins p and u. This meets the line C

at a point v .
I We have the line F that joins q and t. This meets the line B

at the point w .
I We have the line G that joins v and w . This meets the line A

at the point x .
The claim is that this point x is (1 : 0 : a · b). Let us verify this.
1. Note that the line D is given by x1 + x2 = x0 since both i and

t lie on this line. This means that u = (0 : 1 : −1).
2. Note that the line E is given by x1 + x2 = ax0 since both u and

p lie on this line. This means hat v = (1 : a : 0).
3. Note that the line F is given by bx1 + x2 = bx0 since both q

and t lie on this line. This means hat w = (0 : 1 : −b).
4. Note that the line G is given by bx1 + x2 = abx0 since both v

and w lie on this line. This means that x = (1 : 0 : ab) as
required.

Conclusion
I In order to study linear geometry, it is convenient to work with

projective spaces so that rank is the only thing that determines
consistence.

I The geometry of linear projective varieties is closely related to
the corresponding vector subspaces.

I The intersection and join of linear projective varieties can be
easily understood in terms of geometric ideas based on two
notions:
I Every pair of distinct points determines a line.
I Every pair of linear projective subspaces of dimensions a and b

in Pp(k) intersects in a linear projective space of dimension
a + b − p provided a + b ≥ p.

I One can pose problems of finding certain configurations of
linear projective varieties. Such problems naturally lead to
problems in algebra that require the solutions of polynomial
equations of all degrees.


