Steiner's "Algebra of Throws"
 MTH437 - Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali
7th September 2021

Recall

The projective space $\mathbb{P}^{p}(k)$ was introduced as the collection of equivalence classes of points $\left[x_{0}: x_{1}: \cdots: x_{p}\right]$ where:

- The vector $\left(x_{0}, x_{1}, \ldots, x_{p}\right)$ is a non-zero vector in k^{p+1}.
- Two vectors which are multiples of each other give the same point. Projective linear subspaces of $\mathbb{P}^{p}(k)$ are of the form $\mathbb{P}(W)$ which consists of those points which are associated with vectors in a vector subspace W of k^{p+1}.

When W is a $d+1$-dimensional space, $\mathbb{P}(W)$ is d-dimensional and vice versa.

There is a natural "dictionary" between linear algebra and the study of projective linear subspaces. The important properties are as follows.

- Given a point $\mathbb{P}(L)$ of $\mathbb{P}^{p}(k)$ and a linear subspace $\mathbb{P}(W)$ of $\mathbb{P}^{p}(k)$ that does not contain $\mathbb{P}(L)$, the join (or span) $\mathbb{P}(L+W)$ is a linear subspace of $\mathbb{P}^{p}(k)$ that has dimension 1 more than that of $\mathbb{P}(W)$ and it contains $\mathbb{P}(L)$ and $\mathbb{P}(W)$.
- Given two subspaces $\mathbb{P}(V)$ and $\mathbb{P}(W)$ of $\mathbb{P}^{p}(k)$ of dimensions a and b respectively; note that this means that dimensions of V and W are $a+1$ and $b+1$ respectively. If $a+b \geq p$, then since the dimension $V \cap W$ is at least $(a+1)+(b+1)-(p+1) \geq 1$. Hence, $\mathbb{P}(V) \cap \mathbb{P}(W)=\mathbb{P}(V \cap W)$ is a linear space of dimension at least $a+b-p$; in particular, it is non-empty.

Such observations allow us to answer a number of simple questions about linear spaces in projective space.

In particular, we were able to solve the following:
Question: Given three lines $\mathbb{P}(A), \mathbb{P}(B)$ and $\mathbb{P}(C)$ in projective space $\mathbb{P}^{3}(k)$, is there a line that meets all three lines?

A similar looking problem turns out to be rather more complicated.
Question: Given four lines A, B, C and D in projective space $\mathbb{P}^{3}(k)$, is there a line that meets all four lines?

This apparently linear question leads to non-linear (quadratic) equations in terms of coordinates.

Algebra is emergent!

Solving questions involving configurations of linear spaces forces us to consider equations of higher degree.

This can be seen as a consequence of the fact that addition and multiplication of coordinates arises out of configurations of lines as explained below.

In other words, to do geometry, we must do algebra!

Addition

Given the points $p=(1: 0: a)$ and $q=(1: 0: b)$ on the line A given by $x_{1}=0$. We will show that $(1: 0: a+b)$ arises when we examine the point of intersection of this line with another naturally arising line. To do this we also need the "origin" $o=(1: 0: 0)$ which represents the identity element for addition. Note that $r=(0: 0: 1)$ is the "point at infinity" on the line A since the line B given by $x_{0}=0$ is the line at infinity on the plane.

- Consider the line C given by $x_{1}=x_{0}$. The lines A, B and C meet in the point $r=(0: 0: 1)$. Since B is the line at infinity, we may think of A and C as parallel lines.
- Consider the point $s=(0: 1: 0)$ which is on B but not on A or C. Since B is the line at infinity we can think of s as a "direction" different from that of A and C (which are parallel).
- We have the line D which joins p and s. This is a line through p "in the direction" given by s. This meets C in some point t.
- We have the line E which joins o and t. This meets B in some point u. Then u represents the direction of the line E.
- We have the line F which joins q and u. This is the line through q which is in the direction given by u. In other words, it is through q and parallel to E. This meets C in some point v.
- We have the line G which joins v and s. This is the line through v which is parallel to D. This meets A in some point w.

The claim is that the coordinate of w is $(1: 0: a+b)$. Let us work this out!

1. The line D is given by $x_{2}=a x_{0}$ since p and s satisfy this equation.
2. This means that the point t is given by $(1: 1: a)$.
3. Thus the line E is given by $x_{2}=a x_{1}$ since o and t satisfy this equation.
4. This means that the point u is given by ($0: 1: a$).
5. Thus the line F is given by $x_{2}=a x_{1}+b x_{0}$ since u and q satisfy this equation.
6. This means that the point v is given by $(1: 1: a+b)$.
7. Thus the line G is given by $x_{2}=(a+b) x_{0}$ since s and v satisfy this equation.
8. This means that the point w is given by $(1: 0: a+b)$ as required.

- Note that C could have been any line passing through the point r other than A. In other words, it could be any line parallel to A.
- Note that s could have been any point on B other than r. In other words, it could be any direction other than that of A.

Multiplication

Given the points $p=(1: 0: a)$ and $q=(1: 0: b)$ on the line A given by $x_{1}=0$. We will show that $(1: 0: a \cdot b)$ arises when we examine the point of intersection of this line with another naturally arising line. To do this we also need the "origin" $o=(1: 0: 0)$ and the point $i=(1: 0: 1$ which represents the identity element for multiplication. Note that $r=(0: 0: 1)$ is the "point at infinity" on the line A since the line B given by $x_{0}=0$ is the line at infinity on the plane.

As before, we need to choose some additional lines and points.

- Consider the line C given by $x_{2}=0$. The lines B and C meet in the point $s=(0: 1: 0)$.
- Consider the point $t=(1: 1: 0)$ which is on C but not on A or B.
- We have the line D that joins i and t. This meets the line B at a point u.
- We have the line E that joins p and u. This meets the line C at a point v.
- We have the line F that joins q and t. This meets the line B at the point w.
- We have the line G that joins v and w. This meets the line A at the point x.

The claim is that this point x is $(1: 0: a \cdot b)$. Let us verify this.

1. Note that the line D is given by $x_{1}+x_{2}=x_{0}$ since both i and t lie on this line. This means that $u=(0: 1:-1)$.
2. Note that the line E is given by $x_{1}+x_{2}=a x_{0}$ since both u and p lie on this line. This means hat $v=(1: a: 0)$.
3. Note that the line F is given by $b x_{1}+x_{2}=b x_{0}$ since both q and t lie on this line. This means hat $w=(0: 1:-b)$.
4. Note that the line G is given by $b x_{1}+x_{2}=a b x_{0}$ since both v and w lie on this line. This means that $x=(1: 0: a b)$ as required.

Conclusion

- In order to study linear geometry, it is convenient to work with projective spaces so that rank is the only thing that determines consistence.
- The geometry of linear projective varieties is closely related to the corresponding vector subspaces.
- The intersection and join of linear projective varieties can be easily understood in terms of geometric ideas based on two notions:
- Every pair of distinct points determines a line.
- Every pair of linear projective subspaces of dimensions a and b in $\mathbb{P}^{p}(k)$ intersects in a linear projective space of dimension $a+b-p$ provided $a+b \geq p$.
- One can pose problems of finding certain configurations of linear projective varieties. Such problems naturally lead to problems in algebra that require the solutions of polynomial equations of all degrees.

