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Recall

The projective space Pp(k) was introduced as the collection of equivalence
classes of points [x0 : x1 : · · · : xp] where:

I The vector (x0, x1, . . . , xp) is a non-zero vector in kp+1.
I Two vectors which are multiples of each other give the same point.

Projective linear subspaces of Pp(k) are of the form P(W ) which consists of
those points which are associated with vectors in a vector subspace W of
kp+1.

When W is a d + 1-dimensional space, P(W ) is d-dimensional and vice
versa.
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There is a natural “dictionary” between linear algebra and the study of
projective linear subspaces. The important properties are as follows.

I Given a point P(L) of Pp(k) and a linear subspace P(W ) of Pp(k) that
does not contain P(L), the join (or span) P(L + W ) is a linear
subspace of Pp(k) that has dimension 1 more than that of P(W ) and
it contains P(L) and P(W ).

I Given two subspaces P(V ) and P(W ) of Pp(k) of dimensions a and b
respectively; note that this means that dimensions of V and W are
a + 1 and b + 1 respectively. If a + b ≥ p, then since the dimension
V ∩W is at least (a + 1) + (b + 1)− (p + 1) ≥ 1. Hence,
P(V ) ∩ P(W ) = P(V ∩W ) is a linear space of dimension at least
a + b − p; in particular, it is non-empty.

Such observations allow us to answer a number of simple questions about
linear spaces in projective space.

Kapil Hari Paranjape (IISER Mohali) Steiner’s “Algebra of Throws” 7th September 2021 3 / 13



In particular, we were able to solve the following:

Question: Given three lines P(A), P(B) and P(C) in projective space
P3(k), is there a line that meets all three lines?

A similar looking problem turns out to be rather more complicated.

Question: Given four lines A, B, C and D in projective space P3(k), is
there a line that meets all four lines?

This apparently linear question leads to non-linear (quadratic) equations in
terms of coordinates.
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Algebra is emergent!

Solving questions involving configurations of linear spaces forces us to
consider equations of higher degree.

This can be seen as a consequence of the fact that addition and
multiplication of coordinates arises out of configurations of lines as
explained below.

In other words, to do geometry, we must do algebra!
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Addition

Given the points p = (1 : 0 : a) and q = (1 : 0 : b) on the line A given by
x1 = 0. We will show that (1 : 0 : a + b) arises when we examine the point
of intersection of this line with another naturally arising line. To do this we
also need the “origin” o = (1 : 0 : 0) which represents the identity element
for addition. Note that r = (0 : 0 : 1) is the “point at infinity” on the line A
since the line B given by x0 = 0 is the line at infinity on the plane.
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I Consider the line C given by x1 = x0. The lines A, B and C meet in
the point r = (0 : 0 : 1). Since B is the line at infinity, we may think of
A and C as parallel lines.

I Consider the point s = (0 : 1 : 0) which is on B but not on A or C .
Since B is the line at infinity we can think of s as a “direction”
different from that of A and C (which are parallel).

I We have the line D which joins p and s. This is a line through p “in
the direction” given by s. This meets C in some point t.

I We have the line E which joins o and t. This meets B in some point u.
Then u represents the direction of the line E .

I We have the line F which joins q and u. This is the line through q
which is in the direction given by u. In other words, it is through q and
parallel to E . This meets C in some point v .

I We have the line G which joins v and s. This is the line through v
which is parallel to D. This meets A in some point w .
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The claim is that the coordinate of w is (1 : 0 : a + b). Let us work this out!

1. The line D is given by x2 = ax0 since p and s satisfy this equation.

2. This means that the point t is given by (1 : 1 : a).

3. Thus the line E is given by x2 = ax1 since o and t satisfy this equation.

4. This means that the point u is given by (0 : 1 : a).

5. Thus the line F is given by x2 = ax1 + bx0 since u and q satisfy this
equation.

6. This means that the point v is given by (1 : 1 : a + b).

7. Thus the line G is given by x2 = (a + b)x0 since s and v satisfy this
equation.

8. This means that the point w is given by (1 : 0 : a + b) as required.
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I Note that C could have been any line passing through the point r
other than A. In other words, it could be any line parallel to A.

I Note that s could have been any point on B other than r . In other
words, it could be any direction other than that of A.
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Multiplication

Given the points p = (1 : 0 : a) and q = (1 : 0 : b) on the line A given by
x1 = 0. We will show that (1 : 0 : a · b) arises when we examine the point
of intersection of this line with another naturally arising line. To do this we
also need the “origin” o = (1 : 0 : 0) and the point i = (1 : 0 : 1 which
represents the identity element for multiplication. Note that r = (0 : 0 : 1)
is the “point at infinity” on the line A since the line B given by x0 = 0 is
the line at infinity on the plane.

As before, we need to choose some additional lines and points.
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I Consider the line C given by x2 = 0. The lines B and C meet in the
point s = (0 : 1 : 0).

I Consider the point t = (1 : 1 : 0) which is on C but not on A or B.

I We have the line D that joins i and t. This meets the line B at a point
u.

I We have the line E that joins p and u. This meets the line C at a
point v .

I We have the line F that joins q and t. This meets the line B at the
point w .

I We have the line G that joins v and w . This meets the line A at the
point x .
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The claim is that this point x is (1 : 0 : a · b). Let us verify this.

1. Note that the line D is given by x1 + x2 = x0 since both i and t lie on
this line. This means that u = (0 : 1 : −1).

2. Note that the line E is given by x1 + x2 = ax0 since both u and p lie
on this line. This means hat v = (1 : a : 0).

3. Note that the line F is given by bx1 + x2 = bx0 since both q and t lie
on this line. This means hat w = (0 : 1 : −b).

4. Note that the line G is given by bx1 + x2 = abx0 since both v and w
lie on this line. This means that x = (1 : 0 : ab) as required.
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Conclusion
I In order to study linear geometry, it is convenient to work with

projective spaces so that rank is the only thing that determines
consistence.

I The geometry of linear projective varieties is closely related to the
corresponding vector subspaces.

I The intersection and join of linear projective varieties can be easily
understood in terms of geometric ideas based on two notions:
I Every pair of distinct points determines a line.
I Every pair of linear projective subspaces of dimensions a and b in Pp(k)

intersects in a linear projective space of dimension a + b − p provided
a + b ≥ p.

I One can pose problems of finding certain configurations of linear
projective varieties. Such problems naturally lead to problems in algebra
that require the solutions of polynomial equations of all degrees.
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