Integration

Following the discussion in earlier sections, we now give a formal definition of
the integral of a continuous function. It will exhibit the following properties:

1. Given a continuous function f on [a, b], we will associate a number I(f, [a, b])
called the integral of f from a to b.

2. If f is a non-negative function on [a,b], then the integral will be non-
negative. If, in addition, f is positive at some point of [a,b], then the
integral will be positive.

3. If ¢is a point in the interval [a, b], then we will have the identity I(f, [a, b]) =
I(f,la,c]) + I(f,[c,b)]).

4. Given a positive number p, if we define g(z) = f(pz) as a function on
[a/p,b/p], then we have I(g,[a/p,b/p]) = (1/p)I(f,a,b]).

5. Given two continuous functions f and g on [a, b] and a constant ¢, we have
I(cf +g,[a,b]) = cI(f,[a,b]) + I(g,[a,b]).

6. Given a linear function f(x) = ¢+ dz in [a, b], the integral is given by the
area of the trapezium. In other words I(f,[a,b]) = (f(a) + f(b))(b— a)/2.

In fact, the above properties uniquely determine the integral!

Piecewise linear functions

Given a continuous function f on [a,b] that piecewise linear with respect to
the partition @ = 29 < 1 < --- < x, = b. In other words, for ¢ in [0,1] and
x=(1—1t)x;—1 + tx; we have f(z) = (1 —t)f(x;—1) + tf(x;). Applying Rule 3
(as above) repeatedly, we have:

n

I(f,1a,0)) = I(f, [zo, 21 FL(f, [x1, )+ (flans,za]) = D I(f [wim1,2)

i=1
Moreover, we note that for z in the interval [z;_1, x;)

Xr — T;—
z=(1—t)z;—1 +tx; where t = =
Ti — Ti—1

A simple calculation shows that for x in the interval [x;_1, z;],

J(i—y)x — fla)zioy + 2 (f(x) — f(2i-1))

Ty — Tj—1

f(@) =1 =) f(zim1) +tf(z:i) =
In other words, it is ripe for an application of Rule 6. Hence, we have

fl@iz1 + f(a)

B) (xz - $i71)

I(f; [%—1,%]) =



Combining the two formulas for integrals we get

I(f,[a,b]) = ZM (x; —xzi—1) =T (f, (o, 21, ..., Zn))
i=1

which is the trapezoidal rule for the integral of a piecewise linear continuous
function on the interval.

Properties for trapezoidal rule

It is relatively easy to verify all the Rules (1)-(6) for the values obtained by the
Trapezoidal rule applied to piecewise linear continuous functions. In fact, we
have already done this in earlier sections.

General Continuous function

Given continuous functions f and g on the interval [a,b] so that f(z) > g(x) for
all x, we can apply Rule 2 to conclude that

I(f = g,[a,b]) =2 0 since (f —g)(z) = f(z) —g(x) 20

Secondly, by applying Rule 5 to f — g = (—1)g + f to obtain

I(f = g,]a,b]) = (=1)1(g; [a, b]) + I(f, [a,b]) = I(F; [a,b]) = I(g, [a, b])
It follows that I(f,[a,b]) > I(g,[a,b].

In particular, if f is a continuous function, then we have the above inequality
for all g is a piecewise linear continuous functions which satisfy f(z) > g(x) for
z in the interval [a, b].

Tt is thus tempting to expect that I(f, [a, b]) is the supremum of all the I(g, [a, b]);
the latter can be calculated using the trapezoidal rule above. Hence, this would
give a way to calculate I(f, [a,b]) for a general continuous function. There are
two problems that need to be resolved for this to work:

e We need to prove that the collection of values obtained by the trapezoidal
rule for such piecewise linear continuous functions is bounded above.

e We need to extend the notion of supremum to bounded collections of
numbers. (We only introduced the notion of supremum for a sequence of
numbers.)

First of all, we have seen that if f is a continuous function on [a, b], then the
values f(z) are bounded for x in this interval. In other words, there is a constant
M so that f(z) < M for all z in the interval. It follows that, if ¢ is any piecewise
linear continuous function on [a,b] which satisfies g(xz) < f(z) for z in the
interval [a, b], then g(x) < M for all x in the interval. We now see that

I(g, [avbD = T(g, (1'07:51; s 7xn)) = Z w (.’El - !Ei71) < M(b—a)
=1



for any suitable partition of [a,b] into intervals [z;_1,z;] on which g is linear.
This shows that the collection of values of trapezoidal sums associated with
piecewise linear continuous functions dominated by f on [a, b] is bounded above.

Supremum of a bounded set

Given a set A of numbers, which is bounded above, we want to show that there
is a supremum. By definition, this is a number b so that a < b for every a in A
and, if ¢ is a number so that a < ¢ for every a in A, then b < ¢ (so that b is a
“least upper bound” of A in some sense).

We proceed by the bisection method. Let x; be some element of A and y;
be some upper bound of A. We define z,, = (x,, + y,)/2 in what follows. In
each case: - Either a < z, for all ¢ in A. In this case, we put y,+1 = 2z, and
Tpt1 = Ty. - Or, there is an a in A so that a > z,. In this case, we put z,41 = a
and yn4+1 = yn. We note that a <y, for all n and for all ¢ in A. Similarly, we
note that x,, lies in A for all n.

By the usual method of bisection one concludes that (x,)x; is non-decreasing
and (Yn)n>1 is non-increasing; moreover, (Y, — &n)n21 is a sequence of positive
numbers decreasing to 0. It follows that (x,,),>1 and (yn)n>1 converge to the
same number ¢; in fact (z,)n>1 increases to ¢ and (yn)n>1 decreases to c.

Since a < y,, for all n and for all a in A, we see that a < ¢ for all @ in A. On
the other hand, if a > b for all @ in A, then, in particular x,, < b for all n and so
¢ < b. This shows that ¢ has the desired properties.

Trapezoidal Rule

In the previous subsection we have seen that I(f, [a,b]) is the supremum of the
integrals I(g, [a, b]) where g runs over piecewise linear continuous functions on
[a,b] with f(x) > g(z) for all z in this interval. While this is useful for theoretical
questions, from a practical standpoint the following is more useful.

For each positive integer n, let 2; = a + (b — a)(i/n) so that a = zy < 1 <
-+ <, = b is a partition of the interval [a,b]. We consider the piecewise linear
continuous function f, on [a,b] which is linear on x;_1,x;] for i =1,...,n and
satisfies f,,(x;) = f(x;); in other words, f, interpolates the values of f at x;. By
the formula above, we have

I(fslasb]) == T (fo (@0, 21, 0)) = M (s — 20 1)

(Note that it is f(x;) which appear on the right-hand side.)

By the continuity of f, given a positive integer k, we can choose n so that
|f(z) = f(y)| < 1/k whenever |z — |y < (b —a)/n for z, y in [a,b]. In earlier
sections, we have seen that this means that

|f(z) — fu(z)|< 1/k for all z in [a, b]



In particular, we see that
fulz) = 1/k < f(z) < fo(z) + 1/k

Thus,
I(fn - l/kv [avb]) < I(fv [avb]) < I(fn + l/kv [a’b])

We easily calculate
I(fo+1/k,[a,8]) = I(fo — 1/k,[a,b]) = 2(b—a)/k
Since I(f,[a,b]) and I(f,, [a,b]) lie in the interval
(I (fn = 1/k,[a,0]) 1 (fo + 1/, [a, b])]
it easily follows that
[1(f,1a,b]) = I(fn, [a, b)) < 2(b—a)/k

Thus, by suitably choosing k£, and consequently choosing n, we can make this as
small as we like.

This gives us the trapezoidal rule for integration

I(f7 [a, b]) = lim (T (f7 a, b7 n))nZl

where
- 5o ) o 52
i=1
Convergence

More generally, one can obtain convergence of integrals in terms of the distance
between continuous functions (as defined earlier),

If =gl

We have the inequality

[a,p] = sup {|f(x) — g(z)| : = in [a, b]}

f_ |f_g|[a,b] <g< f+ |f _g|[a,b]
Applying the Rules given above we easily prove
[1(f,[a,b]) = I(g, [a,b])] < ||If = glla.t(b — @)

As a consequence, one sees that if (f,,),>1 is a sequence of continuous functions
converging uniformly on the interval [a, b] to a continuous function f, then the
sequence (I(fn,[a,b])),~, of integrals converges to I(f,[a,b]).



Integrals of polynomials and power series

It has been seen by direct computation that if f(z) = ag + a1z + - + apz? is a
polynomial function, then

2 1
yp+

I(f,[O,y]):I(a0+a1x+---+ap:vp7[07y]):aoy+a1%+"‘+app+1

Moreover, by the above result on uniform convergence, we can extend this to
power series as follows. Assume that the power series 21210 anx” has radius
of convergence R. This means that the sequence of partial sums (which are
polynomial functions) converge uniformly for x such that |z| < r < R, for all
0 < r < R. Thus, given y such that 0 < y < R, it follows that

ynJrl

I(Zanxn7 [O7y]) = Zann+ 1
k=0 k=0

and the power series on the right hand side also converges uniformly for y such
that |y <r < Rfor all 0 <r < R.

Standard Notation

Given the above results, which are consistent with the rules of integration found
in calculus, it is more natural to use the notation

b
[ t@de =11, 1a.8)
This notation is also a convenient way to directly express Rule 4 since we get, (a
special case of) the change of variable formula for p > 0
b/p

b
f(pz)dz = (1/p) / f(t)dt

a/p

Secondly, we can also make sense of ff f(z)dz for a > b by defining

/ab f(z)dx = —/ba f(z)dx

This is easily seen to be consistent with Rules 3 and 6. Thus, we get a change of
variable formula for all non-zero constants p

b b/p
/ fWdi=p [ flpa)de
a a/p

This notation is much more convenient than the notation I(f, [a,b]) and thus we
will use it in future.
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