
Power series
In the previous section we have seen that the function exp(x) which is defined
by the series

∑∞
k=0 xk/k! is a continuous function for |x| < 1. Much earlier we

examined the Geometric series
∑∞

k=0 xk which is a rather complicated way of
writing 1/(1 − x) for 0 < x < 1. We can ask more generally when such series
define continuous functions.

A series of the form
∑∞

k=0 akxk is called a (formal) “power series”. The partial
sums fn(x) =

∑n
k=0 akxk are polynomials. Hence, the fn(x) are continuous func-

tions. So, if we can show that the sequence (fn(x))n≥1 is uniformly convergent
for x lying in some interval [a, b], then, as before, we will obtain a continuous
function in that interval represented by this power series.

Geometric Series
The base example for convergence of power series is the geometric series

∑∞
k=0 xk.

The partial sums of this series are based on the identity (which we have seen
earlier)

fm(x) =
m∑

k=0
xk = 1− xm+1

1− x
= 1

1− x
− xm+1

1− x

which makes sense for x 6= 1. When is this uniformly convergent to f(x) =
1/(1− x)?

If we have |x| ≤ r < 1, we see that the “error term” is∣∣∣∣xm+1

1− x

∣∣∣∣ ≤ rm+1

1− r

We have seen that (rn)n≥1 converges to 0. So, given a positive integer p, we
can choose mp so that, for m ≥ mp we have rm+1/(1− r) < 1/p. It follows that
|f(x)− fm(x)| < 1/p for m ≥ mp for all x such that |x| ≤ r.

Hence, we have proved uniform convergence of (fm)m≥1 to f for |x| ≤ r < 1.
Clearly this proof works for all r such that 0 < r < 1.

Bounded sequences
Given a sequence (an)n≥1 in which all the terms are bounded, let us examine
the series

∑
n=1 anxn. Since there is an M so that, for all n we have

|an| < M

As before we take fm(x) =
∑m

k=0 akxk and ask whether the sequence (fm)m≥1
is uniformly convergent.

The difference with the previous case is that we no longer can “guess” the
limiting function. So, we must use Cauchy’s version of uniform convergence. So

1



we calculate for n ≥ m that

|fn(x)− fm(x)| =

∣∣∣∣∣
n∑

k=m+1
akxk

∣∣∣∣∣
≤

n∑
k=m+1

∣∣akxk
∣∣ ≤ n∑

k=m+1
M |x|k

≤
∞∑

k=m+1
M |x|k = M |x|m+1

1− |x|

Note that the last two steps make sense only for |x| < 1. Now, as above, let us
assume that |x| ≤ r < 1. Then, we get

|fn(x)− fm(x)| ≤ Mrm+1

1− r

Since r < 1, the sequence (rn)n≥1 converges to 0. So, given a positive integer p,
there is an mp, so that for all m ≥ mp, we have (Mrm+1)/(1 − r) < 1/p. We
then get |fn(x) − fm(x)| < 1/p for all n ≥ m ≥ mp and for all x such that
|x| ≤ r < 1.

Hence we have demonstrated that Cauchy’s criterion for uniform convergence
is satisfied by the sequence (fn)n≥1 in the region |x| ≤ r < 1. This argument
works for every r such that 0 < r < 1, so the limit function f of this sequence of
polynomials is a continuous function in |x| < 1.

Convergent sequences

Since a convergent sequence is automatically bounded, a special case of this
is when (an)n≥1 is a sequence that converges. In particular, we see that∑∞

n=1(−1)n+1(xn/n) converges uniformly for |x| ≤ r < 1 and defines a continu-
ous function for |x| < 1. We will examine the properties of the function defined
by this series later on.

Reverse implication

Given a power series
∑∞

n=0 anxn. Suppose that there is some non-zero number t
so that

∑∞
n=0 antn is a convergent series.

Since
∑∞

n=0 antn is convergent the sequence (antn)n≥1 converges to 0.

It follows from the earlier discussion that the power series
∑∞

n=0 antnyn converges
uniformly for |y| ≤ r < 1 and defines a continuous function for |y| < 1. Using
the variable x = ty, this condition becomes |x| ≤ r|t| < |t|. Since 0 < r < 1 is
arbitrary, the result number s = r|t| is an arbitrary number such that 0 < s < |t|.

In other words, the series
∑∞

n=0 anxn converges uniformly for |x|≤ s < |t| and
gives a continuous function for |x| < |t|.
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Applying this to the series
∑∞

n=1(−1)n+1/n which we have seen as a convergent
series, we get again the convergence of

∑∞
n=1(−1)n+1xn/n for |x| < 1. Note

that this series is not convergent for x = −1, so this limitation on |x| is precise!

Convergence
The above reasoning suggests that in order to obtain convergence of the series
we need to compare the series with the Geometric series. Suppose that for some
positive number R, there is an integer nR and a positive number M so that

|ak| ≤
M

Rk

for all k ≥ nR. In that case for all x satisfying |x| ≤ r < R and for any n ≥ nR,
the geometric series gives an upper bound

∞∑
k=n

|akxk| ≤
∞∑

k=n

M

(
|x|
R

)k

= M

(
|x|
R

)n 1
1− |x|R

≤M
( r

R

)n 1
1− r

R

Since r
R < 1, given any positive integer p, we can choose np large enough so that

M
( r

R

)np 1
1− r

R

< 1/p

Now, consider the difference between the partial sums for m ≥ n ≥ np,

|fm(x)− fn(x)| ≤
m∑

k=n+1
|akxk| ≤

∞∑
k=np

|akxk| < 1/p

Since this can be done for any p, we see that (fn)n≥1 is a sequence that satisfies
Cauchy’s criterion for uniform convergence. As seen above this means that
the sequence (fn)n≥1 converges uniformly on |x| ≤ r < R. Since the fn’s are
polynomials and 0 < r < R is arbitrary, the limit function f is continuous in the
region |x| < R.

In summary, we have shown that if, for some positive R > 0, there is a positive
constant M and an integer nR such that, for all k ≥ nR we have

|ak| <
M

Rk

then the series
∑∞

k=0 akxk converges uniformly in |x|≤ r < R for arbitrary r
such that 0 < r < R and defines a continuous function in the region |x| < R.

We note that the condition that for all k ≥ nR we have

|ak| <
M

Rk

can be seen as the condition that (|an|)n≥1 is dominated by the sequence
(M/Rn)n≥1. This underlines the importance of the comparison of the growth of
sequences that we studied during the first few lectures.
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The exponential series

Once again let us examine the series
∑∞

n=0 xk/k!. Given any positive R, we have

1
n! = Rn

n!
1

Rn
= Rp

p! ·
Rn−p

(p + 1) · (p + 2) · · ·n
1

Rn

Now, if nR is an (or the smallest) integer greater than R, then for p = nR we
have R < p + q for positive integers q and so

Rn−p

(p + 1) · (p + 2) · · ·n < 1

We then put M = (Rp)/p! and obtain, for all n ≥ nR

1
n! = Rp

p! ·
Rn−p

(p + 1) · (p + 2) · · ·n
1

Rn
< M

1
Rn

as required.

In other words, the series
∑∞

n=0 xk/k! converges to a continuous function exp(x)
in |x| < R for all choices of positive R. This makes it define a continuous
function for all values of x.

Sine and Cosine series

The Sine, Cosine, Hyperbolic Sine and Hyperbolic Cosine series are given by

sin(x) =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!

cos(x) =
∞∑

k=0
(−1)k x2k

(2k)!

sinh(x) =
∞∑

k=0

x2k+1

(2k + 1)!

cosh(x) =
∞∑

k=0

x2k

(2k)!

We note that these series are obtained by dropping alternate terms of the series
exp(x) and possibly putting a sign. Looked at that way, it is obvious that the
same argument as given above will show that these series also converge and give
continuous functions for |x| < R for all positive values of R. Thus, these are
continuous functions for all values of x.
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