
Intermediate values and Continuity
In order to find the cube root of a number like 5, we talked about the “bisection
method” which proceeds as follows.

• We take f(x) = x3 − 5.
• We find a number, say x1 = 1, such that f(1) < 0 and another number,

say y1 = 2 such that f(1) > 0.
• We define zn = (xn + yn)/2 for n ≥ 1 where xn and yn are iteratively

defined by:
– if f(zn) ≤ 0, then xn+1 = zn and yn+1 = yn.
– if f(zn) > 0, then xn+1 = xn and yn+1 = zn.

As can be seen easily, by an application of induction, (yn+1 − xn+1) = 1/2n.
Moreover, (xn)n≥1 is non-decreasing and (yn)n≥1 is non-increasing. Hence we
have a least upper bound α of (xn) and a greatest lower bound β of (yn). Since
the two sequences converge and the distance between them goes to 0, we conclude
α = β. So we have a candidate α for a zero of f(x).

However, how can we conclude that f(α) = 0? In order to prove this, we need to
know that f(xn) converges to f(α) and f(yn) converges to f(α). Since the first
limit is at most 0 and the second limit is at least 0, we would get the required
condition that f(α) = 0.

To understand what kind of f will have this property, we must first explore more
clearly what one means by the expression f(x).

Functions
In modern terms, a function can be seen to be like a computer program that,
given an input x returns a number f(x). The simplest such functions what we
can think of are:

• The constant function that returns the same fixed value c, whatever input
is given to it.

• The identity function that, given a number x as input, returns x as its
output.

There is a natural way to combine functions. Given two functions f and g we
can:

• Create the sum f + g of the two functions that, given input x, returns the
sum f(x) + g(x) as its output.

• Create the product f · g of the two functions that, given input x, returns
the product f(x) · g(x) as its output.

• Create the ratio f/g of the two functions that, given input x, returns the
ration f(x)/g(x) if g(x) is non-zero and is undefined otherwise.

Note that the last example is a partially defined function: it is only defined for
some values x of the input.
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Given a function f and a constant c, we can define the product c · f as the
product of the constant function and f . In particular, we have −f = (−1) · f
and so subtraction of functions also makes sense. Addition and subtraction
of functions together with multiplication of functions exhibits the collection of
functions as a vector space. This is a very useful way to look at the collection of
functions and leads to the study of “functional analysis”: the analysis of vector
spaces of functions.

By combining the two natural examples of functions using the operations given
above, we can make sense of “rational functions” which are given by a formula
of the type:

f(x) = a0 + a1x+ · · ·+ apx
p

b0 + b1x+ · · ·+ bqxq

for some chosen fixed numbers a0, a1, . . . , ap and b0b1, . . . , bq. Clearly, for the
formula to be meaningful we need bj to be non-zero for some j. In fact, if the
function is to be non-zero, we may as well assume that ap 6= 0 and bq 6= 0 by
dropping all terms with coefficient 0.

When comparing functions f and g which are partially defined, we can only
compare them when both f(x) and g(x) are defined for the same input x. For
example, we have the functions f(x) = x+ 1 and g(x) = (1− x2)/(1− x). The
function g is only defined for x 6= 1. However, we do have f = g whenever both
sides are defined.

Occasionally, we will want to be more strict and insist that for f = g, both
functions should be defined for the same inputs x. In those cases we will make
this explicitly clear.

Approximation
As we have already seen, numbers are often only specified approximately. One
can imagine that a computer program takes two inputs: the value of x and
an “error bar” k. The computation of f(x) actually gives us a number y with
the property that it differs from f(x) by at most 1/k. Typically, this error bar
is given as a power of 10, like 10r so we can say that we have calculated the
function “to r places of decimal”.

We must therefore take into account what we can do with functions described
by such approximation programs.

One more way to combine functions is “composition”, which should not be
confused with multiplication! Given a function f and a function g we can form
the function f ◦ g that, given input x, returns the value f(g(x)) provided that f
is defined for the input number g(x). For example, we can see h(x) = x4 + 1 as
f ◦ g where f(x) = x2 + 1 and g(x) = x2.

Now, if g only returns an approximate answer, what can we say about h?
Similarly, if the input of a function is only given approximately, how good is
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the approximation in the answer? These questions lead us to the definition of
“continuity” of functions.

Continuous Functions
A function is said to be continuous if:

The limit of the values of the function on the terms of a convergent
sequence is the value at the limit of the sequence.

In symbols, this is said as follows. Suppose that (xn)n≥1 is a sequence of numbers
converging with lim(xn)n ≥ 1 = x. Assume that the function f is defined at all
these numbers. Then the sequence of values (f(xn))n≥1 converges to f(x).

From the arithmetic properties of limits and the arithmetic operations on func-
tions as defined above, we see that the sum, difference and product of continuous
functions yield continuous functions. Moreover, if f and g are continuous
functions, then we see that f/g is continuous in the region where g(x) 6= 0.

Thus, we see that rational functions as introduced above are continuous functions
in the regions where they are defined.

If f and g are continuous and lim(xn)n≥1 = x is a point where g(x) is defined,
then lim(g(xn))n≥1 = g(x). So, if g(x) is a point where f(g(x)) is defined then,
by the continuity of f we see that lim(f(g(xn)))n≥1 = f(g(x)). Thus, we see
that f ◦ g is continuous.

This shows us that continuous functions solve the problem raised in the previous
sub-section regarding approximation of functions.

Intermediate Value Property
An important property of continuous functions can be stated by saying that
there is “no break” in such a function. More precisely, if f(x) = a and f(y) = b
and a < c < b, then, provided that f is continuous for all numbers z such that
a ≤ z ≤ b, we can show that there is such a z for which f(z) = c. We note
that the special case where c = 0 is the question that we started this section
with. This property is called the “Intermediate Value Property”; it justifies our
intuitive sense of “continuity” in the sense of “without a break”.

We follow the bisection method and put x1 = x and y1 = y. We define
zn = (xn + yn)/2 for n ≥ 1 where xn and yn are iteratively defined by:

• if f(zn) ≤ c, then xn+1 = zn and yn+1 = yn.
• if f(zn) > c, then xn+1 = xn and yn+1 = zn.

As seen earlier, the sequences (xn)n≥1, (yn)n≥1 and (zn)n≥1 all converge to the
same limiting value which we call z. We note that (xn) is an increasing sequence,
so z ≥ x1 = x. Similarly (yn) is a decreasing sequence so z ≤ y1 = y. Hence,
x ≤ z ≤ y.
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Next, by continuity of f , we have lim(f(xn))n≥1 = f(z). By the above choice of
xn, we have f(xn) ≤ c for all n. It follows that lim(f(xn))n≥1 ≤ c; so f(z) ≤ c.

Similarly, by the choice of yn, we have f(yn) ≥ c for all n. It follows, that
lim(f(yn))n≥1 ≥ c. By continuity of f , we have f(z) = lim(f(yn))n≥1. So we
get f(z) ≥ c.

Combining the two steps, we see that f(z) = c.

Uniform continuity
Given a function f(x) that is defined and continuous for all x satisfying a ≤ x ≤ b
we would like to give approximate values with a chosen error bar. To do so, given
any positive integer k, we would like to produce a positive integer nk so that,
for every pair of points x and y lying between a and b that satisfy |x− y| < 1/k,
we have |f(x)− f(y)| < 1/nk. If this is so, then we can break up the segment
of the numbers between a and b into (a finite number) of segments of length
at most 1/nk. The value of f at any two points of this segment would be close
enough to each other, so we only need to determine the value at one of these
points for each sub-segment to get a table of good approximations of f .

We now show that if f is any continuous function, then it has the above property.
However, the proof is indirect and uses “proof by contradiction”. As a result, it
is not easy to determine nk by going through the proof!

Suppose that there is no such nk. (This “suppose not” is the first step in any
proof by contradiction.) In that case, for every integer n (which is a candidate
for nk), there would be a pair of points xn and yn which lie between a and b and
have the property that |xn−yn| < 1/n, but |f(xn)−f(yn)| ≥ 1/k. Since (xn)n≥1
is a bounded sequence (all of them lie between a and b), there is a convergent
subsequence (xnp)p≥1. (For example, we know that lim sup(xn) exists and a
subsequence of (xn) converges to it.)

Since |xnp − ynp | < 1/np it follows that (ynp)p≥1 also converges and has the
same limit as (xnp

)p≥1. Moreover, since xn’s and yn’ lie between a and b, so do
the limits. Now, f is given to be continuous, so

lim(f(xnp))p≥1 = f
(
lim(xnp)p≥1

)
= f

(
lim(ynp)p≥1

)
= lim(f(ynp))p≥1

On the other hand, we have |f(xnp
) − f(ynp

)| ≥ 1/k for all p. This is not
possible. This means that our original supposition that there is no such nk is
wrong!

Note that, in this proof, we crucially used the fact that all the points lie in a
bounded region of the number line and that f is continuous at all these points.

Intervals

The following kinds of regions in the number line will occur often. Hence, it is
convenient to give them names.
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• The closed interval [a, b] consists of numbers x which satisfy a ≤ x ≤ b.
• The open interval (a, b) consists of numbers x which satisfy a < x < b.
• The left-open right-closed interval (a, b] consists of numbers x which satisfy
a < x ≤ b.

• The left-closed right-open interval [a, b) consists of numbers x which satisfy
a ≤ x < b.

Henceforth, we will use this terminology to shorten our statements.

ε-δ definition of continuity
We note that if f is continuous in some interval [x0 − 1/p, x0 + 1/p] around a
point x0, then we can apply the result of the previous subsection to conclude the
following. Given any positive integer k there is a positive integer nk (which must
be larger than p!) so that if x satisfies |x−x0| < 1/nk, then |f(x)−f(x0)| < 1/k.

Note that, unlike the previous sub-section, we are fixing x0. This is why the
condition in the previous sub-section is called uniform continuity — the same
nk works for all choices of x0.

In words, we can put this as follows.

Given any error bar, the values of f(x) are within that error bar
distance from f(x0) provided that x lies within a small enough interval
centred at x0.

It is sometimes inconvenient to state error bars in the form 1/k, so it is considered
convenient to use the Greek symbol ε to denote the error bar. The deviation of
x from x0 is required to be bounded by a number specified by the Greek symbol
δ. This leads to the “traditional” definition of continuity that will be found in
many books.

A function f is said to be continuous at x0 if, given any ε > 0, there is
a δ > 0 so that, for all x such that (f is defined at x and) |x−x0| < δ,
we have |f(x)− f(x0)| < ε.

The equivalence of the earlier definition with this definition can be seen as an
application of the Archimedean principle.

Piecewise continuous functions
The Heaviside function is defined by

H(x) =
{
−1 if x < 0
1 if x ≥ 0

Now, the sequence ((−1/n))n≥1 converges to 0, but clearly H(−1/n) = −1
whereas H(0) = 1. So this function is not continuous. This is the problem with
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the continuity of functions defined “piecewise” by using “if-then-else” program-
ming constructions. However, consider the function

a(x) =
{
−x if x < 0
x if x ≥ 0

On the one hand it is clear that this function is just the function −x in any
interval [−a,−b] on the negative side of the number line and it is the function
x in any interval [a, b] on the positive side of the number line. What about
continuity at 0?

Given any ε > 0, we note that if |x| < ε, then |a(x)| < ε, since a(x) = |x|! So,
this function satisfies the condition for continuity at 0 given above.

More generally, suppose that f is continuous on the interval [a, b] and g is
continuous on the interval [b, c]. In addition, assume that f(b) = g(b). Then we
can define the “join” of f and g by

h(x) =
{
f(x) if a ≤ x ≤ b
g(x) if b ≤ x ≤ c

It is clear that h is continuous at any point of [a, b) since it is just f in an interval
around that point. Similarly, h is continuous at any point of (b, c] since it is just
g in an interval around that point. What about continuity at b?

For all given ε > 0, we need to find a δ > 0 so that if |x − b| < δ, then
|h(x)− h(b)| < ε. Now, f is continuous at b and defined on [a, b]. So, there is
a δ1 so that if |x − b| < δ1 and x lies in [a, b], then |f(x) − f(b)| < ε. Clearly,
the condition on x says that b − δ < x ≤ b. Similarly, by the continuity at
b of g which is defined on [b, c] results in δ2 so that, b ≤ x ≤ x + δ2, then
|g(x)− g(b)| < ε. Now, take δ = min{δ1, δ2}. Since f(b) = g(b) = h(b), we easily
check that |h(x)− h(b)| < ε for b− δ < x < b+ δ as required.

What can we do if f(b) and g(b) are different? We can “shift” one of the functions.
For example, we can take g1(x) = g(x) + (f(b)− g(b)) where the second term is
treated as a constant function. Now, we can apply the above construction to f
and g1 to produce a continuous function by “patching” as above.

This method of patching together continuous functions gives one more method
to create continuous functions.

Pitfalls
All of the above discussion might give the impression that continuity is equivalent
to the intermediate value property. However, that impression is wrong! There
are pathological examples of functions that satisfy the intermediate value property
but are not continuous. Analysis is full of such counter-intuitive pitfalls. They
underline the need to be careful in making our statements accurate and our
proofs checkable.
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