Solutions to Quiz 5

1. Find one solution of the equation

$$
x^{2} y^{\prime \prime}+x(3+x) y^{\prime}+y=0
$$

using the Frobenius method.

Solution: We substitute $y=\sum_{k} y_{k} x^{k}$ with $y_{k}=0$ for k sufficiently negative.
Now we equate powers of k to get the equations

$$
(k(k-1)+3 k+1) y_{k}+(k-1) y_{k-1}=0
$$

(1 Mark for this equation.)
It follows that

$$
y_{k}=-\frac{(k-1)}{k^{2}+2 k+1} y_{k-1}
$$

As long as the denominator is non-zero. Now

$$
k^{2}+2 k+1=(k+1)^{2}
$$

So as long as $k \neq-1, y_{k}$ is a multiple of y_{k-1}. (1 Mark for this).
Since $y_{k}=0$ for sufficiently negative k, we see that the only possible non-zero y_{k} are for $k=n-1$ for n a non-negative integer. (1 Mark for this.)

We put $y_{n-1}=a_{n}$ and obtain

$$
a_{n}=-\frac{(n-2)}{n^{2}} a_{n-1} \text { for } n \geq 1
$$

(1 Mark for this.)
So we get

$$
y=a_{0} x^{-1}(1+x)
$$

(1 Mark for this.)

