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Plane curves and flows

A family of plane curves is described by equations of the type Φ(x, y) = c where
Φ is a “nice” function of two variables and c is the parameter that chooses a
particular curve in the family. If (x(t), y(t)) is a parametric solution to such a
curve, then we have f(t) = Φ(x(t), y(t)) = c is a constant. Hence

0 = df

dt
= ∂Φ

∂x

dx

dt
+ ∂Φ

∂y

dy

dt

If we put

(M(x, y), N(x, y)) =
(

∂Φ
∂x

,
∂Φ
∂y

)
then this becomes Mẋ(t) + Nẏ(t) = 0 which says that the tangent vector
(ẋ(t), ẏ(t)) to the curve is perpendicular to the vector (M, N). In other words,
the tangent vector is a multiple of (N,−M).

Conversely, given a vector (N,−M) at each point of the plane, we can ask
whether there is a family of curves which have these vectors as tangent vectors.
This problem can be solved if we find a function Φ such that

(M(x, y), N(x, y)) =
(

∂Φ
∂x

,
∂Φ
∂y

)
This question is sometimes posed (in notation which we will not explain here!)
as solving for Φ in the equation

dΦ = Mdx + Ndy

If we find such a function, then the equation Φ(x, y) = c can be seen as implicitly
defining y as a function of x. For example, the equation x2 + y2 = r2 can be
seen as implicitly defining y =

√
r2 − x2. Thus, the problem is also sometimes

posed as the problem of solving the differential equation M + N dy
dx = 0.

In other words, we see that given a pair of functions (M, N) of two variables,
the following three problems are related:

1. Find a function Φ such that (M, N) = (∂Φ/∂x, ∂Φ/∂y).
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2. Find a family of curves Φ(x, y) = c whose tangent at (x, y) is parallel (or
proportional) to (N,−M).

3. Solve the differential equation M + Ndy/dx = 0 to write y as an implicit
function of x.

These are not exactly the same problem. We can see that if we find a function Φ
such that (

∂Φ
∂x

,
∂Φ
∂y

)
= (qM, qN)

for a suitable (non-zero!) function q, then we have a solution of the second
problem. Moreover, finding such a Φ also gives an implicit solution for the third
problem.

Exact and closed differentials

If we have a solution Φ for the first problem, we see that

∂N

∂x
− ∂M

∂y
= ∂2

∂x∂y
Φ− ∂2

∂y∂x
Φ = 0

In other words, the first problem only has a solution, if the condition

∂N

∂x
− ∂M

∂y
= 0

holds. In such a case we say that the differential Mdx + Ndy is “closed” or
“locally exact”1. We can then put

Φ(x, y)− Φ(0, y) =
∫ x

0
Mdx

where we integrate with respect to x treating y as a constant. Differentiating
both sides with respect to y we have

N − dΦ(0, y)
dy

= ∂

∂y

(∫ x

0
Mdx

)

In other words, we get

dΦ(0, y)
dy

= N − ∂

∂y

(∫ x

0
Mdx

)
1In most (classical) books on this topic you will find that this condition is called “exact”.

However, in terms of modern conventions, it is better to refer to it as “closed” or “locally
exact”.
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In fact, we can check that the right-hand side does not depend on x

∂

∂x

(
N − ∂

∂y

(∫ x

0
Mdx

))
= ∂

∂x
N − ∂2

∂x∂y

(∫ x

0
Mdx

)
= ∂

∂x
N − ∂

∂y
M = 0

It follows that

Φ(0, y)− Φ(0, 0) =
∫ y

0

(
N − ∂

∂y

(∫ x

0
Mdx

))
dy

Note that we only want Φ up to a constant. So, putting it all together, we get a
formula

Φ(x, y) = c +
∫ x

0
Mdx +

∫ y

0

(
N − ∂

∂y

(∫ x

0
Mdx

))
dy

This formula gives us Φ whenever the differential Mdx + Ndy is “closed” or
“locally exact”.

In fact, one can check that given any path from (0, 0) to (x, y) we can “integrate
along the path” to get Φ(x, y)−Φ(0, 0). So we can also give a more “symmetric”
formula

Φ(x, y) = c +
∫ 1

0
(M(xt, yt)x + N(xt, yt)y) dt

where the integration is to be performed with respect to t keeping x and y as
constants.

Inexact differentials

We have seen that the differential equation dy/dx = −M/N has a solution
with given initial conditions whenever the right-hand side is a “sufficiently nice”
function. Now, there may be points where N = 0 causing this equation to “blow
up”, but as long as M 6= 0 at and near those points we can solve dx/dy = −N/M
to find x as a function of y. Putting these “bits of curves” together, we can find
curves at all points where (M, N) 6= (0, 0).

A different approach is to consider the pair of differential equations

dx

dt
= N(x, y)

dy

dt
= −M(x, y)
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as a single vector-valued equation

d

dt

(
x
y

)
=
(

N(x, y)
−M(x, y)

)
As seen earlier, for “sufficiently nice” functions M and N , this can be integrated
for each initial value (x0, y0) to give a flow for a value of t not too large. It
follows that we have a “flow” at every point of the plane. Since the flow is
time-independent, the flow is along plane curves.

In summary, we can justify the assertion that there is a function Φ(x, y) such
that the solutions of the above differential equations “lie along” the curves
Φ(x, y) = c. Now the tangent to this curve at (x, y) is parallel to the vector
(∂Φ/∂y,−∂Φ/∂x). Since the slope of the tangent to the curves considered above
is −N/M , we see that

∂Φ
∂y

= q(x, y)N(x, y)

−∂Φ
∂x

= −q(x, y)M(x, y)

for a suitable function q. This is equivalent to the assertion that, for this choice
of q the differential q(Mdx + Ndy) is closed. In other words, there is a function
Φ such that

∂Φ
∂x

= q(x, y)M(x, y)

∂Φ
∂y

= q(x, y)N(x, y)

So, if Mdx + Ndy is any differential, then there is a suitable function q so that
q(Mdx + Ndy) which is closed or “locally exact”. In classical literature, this q is
called the “integration factor”. Unfortunately, it is not unique which makes it
difficult to find! Note that once we have found q, we can use the methods of the
previous section to find Φ.

Let us first see what equation is satisfied by q. By the closed condition, we have

∂

∂x
(qN)− ∂

∂y
(qM) = 0

This gives us

N
∂q

∂x
−M

∂q

∂y
= q

(
∂M

∂y
− ∂N

∂x

)
Since we have not learnt any techniques to solve partial differential equations so
far, this seems like a hopeless case! However, it may be the case that q depends
only on x. In that case, we obtain the equation

dq

dx
= q

∂M
∂y −

∂N
∂x

N

4



We can solve this to get the formula

q = exp
(∫

dx

∂M
∂y −

∂N
∂x

N

)

Obviously, this formula only works if the expression

∂M
∂y −

∂N
∂x

N

depends only on x. Since M and N are known to us, we can calculate and check
this condition.

A similar formula can be found for q as a function of y, if the following expression
depends only on y.

∂M
∂y −

∂N
∂x

M

Thus, the above equation for q can be solved in some special cases. In general,
one can only prove a result to the effect that a solution exists!

An example

We end with an “artificial example” that demonstrates the above techniques.

Consider the differential dx+(x+2ye−y)dy. We see that (M, N) = (1, x+2ye−y)
and

∂M

∂y
− ∂N

∂x
= −1 6= 0

So we need to find an integration factor. We can solve

dq

dy
= q

∂N
∂x −

∂M
∂y

M
= −q

and note that the solution q = ey depends only on y as required. So we take
(M1, N1) = (ey, x + 2y) and solve for Φ as usual.

Φ(x, y) =
∫

Mdx+
∫ (

N − ∂

∂y

∫
Ndx

)
dt = xey+

∫
(xey + 2y − xey) dy = xey+y2

You can find many more examples in section 2.8 and 2.9 of Simmons’ book on
differential equations.
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