Solutions to Assignment 2

1. Solve the linear ordinary differential equations with constant coefficients

$$
\frac{d \vec{v}}{d t}=A \cdot \vec{v}
$$

for each of the following matrices A by calculating $\exp (t A)$.
(a) $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$

Solution: The characteristic polynomial of this matrix is $T(T-1)+1$ which is the same as $(T-1 / 2)+3 / 4$. Following the notes, we put

$$
J=\frac{\left(A-\frac{1}{2} \mathbf{1}_{2}\right)}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}} \cdot\left(\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right)
$$

We then have $J^{2}=-\mathbf{1}_{2}$. Hence, if we put

$$
G=\left[\binom{1}{0}, J \cdot\binom{1}{0}\right]=\left(\begin{array}{cc}
1 & -1 / \sqrt{3} \\
0 & 2 / \sqrt{3}
\end{array}\right)
$$

then $J \cdot G=G \cdot I$ where

$$
I=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Following the notes once again, we see that

$$
\exp (t A)=\exp (t / 2) G \cdot R\left(t \cdot \frac{\sqrt{3}}{2}\right) \cdot G^{-1}
$$

where

$$
R(u)=\exp (u I)=\left(\begin{array}{cc}
\cos u & -\sin u \\
\sin u & \cos u
\end{array}\right)
$$

To complete the calculation (up to matrix multiplication!) we note that

$$
G^{-1}=\left(\begin{array}{cc}
1 & 1 / 2 \\
0 & \sqrt{3} / 2
\end{array}\right)
$$

(b) $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$

Solution: The characteristic polynomial of A is $(T-1)^{2}+1$. We follow the same technique as above. We note that

$$
\left(A-\mathbf{1}_{2}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=I
$$

Now, as above we define

$$
R(t)=\exp (t I)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

Since $I=\left(A-\mathbf{1}_{2}\right)$ we have $R(t)=\exp (t A) \cdot \exp \left(-t \mathbf{1}_{2}\right)$. In other words

$$
\exp (t A)=\exp (t) \cdot R(t)
$$

(c) $A=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$

Solution: The characteristic polynomial of A is $(T-1)(T+1)+1$ or equivalently T^{2}. In other words, this is a nilpotent matrix. By inspection we see that the vector $\binom{1}{1}$ is in the image of A. It follows that if we put

$$
G=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

then

$$
A \cdot G=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)=G \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Using the fact that

$$
\exp \left(t \cdot\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

It follows that

$$
\exp (t A)=G \cdot\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \cdot G^{-1}
$$

where we calculate

$$
G^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

(d) $A=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$

Solution: The characteristing polynomial of A is $T(T+1)-1$), or equivalently $(T+1 / 2)^{2}-5 / 4$. We calculate

$$
A-\frac{-1+\sqrt{5}}{2} \mathbf{1}_{2}=\frac{1}{2}\left(\begin{array}{cc}
1-\sqrt{5} & 2 \\
2 & -1-\sqrt{5}
\end{array}\right)
$$

The vector $\overrightarrow{v_{1}}=\binom{-2}{1-\sqrt{5}}$ is sent to 0 by the above matrix. Similarly, we
check that $\overrightarrow{v_{2}}=\binom{-2}{1+\sqrt{5}}$ is mapped to 0 by $A-(-1-\sqrt{5}) / 2 \mathbf{1}_{2}$. Following the method outlined in the notes, we then put

$$
G=\left(\begin{array}{cc}
-2 & -2 \\
1-\sqrt{5} & 1+\sqrt{5}
\end{array}\right)
$$

and check that

$$
A \cdot G=\left(\begin{array}{cc}
1-\sqrt{5} & 1+\sqrt{5} \\
-3+\sqrt{5} & -3-\sqrt{5}
\end{array}\right)=G \cdot\left(\begin{array}{cc}
\frac{-1+\sqrt{5}}{2} & 0 \\
0 & \frac{-1-\sqrt{5}}{2}
\end{array}\right)
$$

It follows that

$$
\exp (t A)=G \cdot\left(\begin{array}{cc}
\exp \left(t \frac{-1+\sqrt{5}}{2}\right) & 0 \\
0 & \exp \left(t \frac{-1-\sqrt{5}}{2}\right)
\end{array}\right) \cdot G^{-1}
$$

where

$$
G^{-1}=\frac{-1}{4 \sqrt{5}}\left(\begin{array}{cc}
1+\sqrt{5} & 2 \\
-1-\sqrt{5} & -2
\end{array}\right)
$$

(e) $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$

Solution: The characteristic polynomial of A is $T(T-1)-1$, or equivalently $(T-1 / 2)^{2}-5 / 4$. We calculate

$$
A-\frac{1+\sqrt{5}}{2} \mathbf{1}_{2}=\frac{1}{2}\left(\begin{array}{cc}
-1-\sqrt{5} & 2 \\
2 & 1-\sqrt{5}
\end{array}\right)
$$

The vector $\overrightarrow{v_{1}}=\binom{2}{1+\sqrt{5}}$ is sent to 0 by the above matrix. Similarly, we check that $\overrightarrow{v_{2}}=\binom{2}{1-\sqrt{5}}$ is mapped to 0 by $A-(1-\sqrt{5}) / 2 \mathbf{1}_{2}$. Following the method outlined in the notes, we then put

$$
G=\left(\begin{array}{cc}
2 & 2 \\
1+\sqrt{5} & 1-\sqrt{5}
\end{array}\right)
$$

and check that

$$
A \cdot G=\left(\begin{array}{ll}
1+\sqrt{5} & 1-\sqrt{5} \\
3+\sqrt{5} & 3-\sqrt{5}
\end{array}\right)=G \cdot\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right)
$$

It follows that

$$
\exp (t A)=G \cdot\left(\begin{array}{cc}
\exp \left(t \frac{1+\sqrt{5}}{2}\right) & 0 \\
0 & \exp \left(t \frac{1-\sqrt{5}}{2}\right)
\end{array}\right) \cdot G^{-1}
$$

where

$$
G^{-1}=\frac{-1}{4 \sqrt{5}}\left(\begin{array}{cc}
1-\sqrt{5} & -2 \\
-1-\sqrt{5} & 2
\end{array}\right)
$$

