
Canonical forms

We saw that the solution of the initial value problem:
d~v

dt
= A · ~v

~v(0) = ~v0

where A is a matrix with constant coefficients is given by:

~v(t) = exp(tA) · ~v0

We have also seen what exp(tA) looks like for some simple 2× 2 matrices A.

Directly computing exp(tA) from A numerically is possible since the series
converges rapidly. However, giving an algebraic formula would appear to be
quite difficult since each computation of a matrix power is computationally
intensive. The “canonical form” of the matrix A is a useful technique to solve
this problem.

Conjugates of exp(tA)

Given a (square) matrix A, we say that G−1 ·A ·G is a conjugate of A, where G
is an invertible matrix of the same size as A. By inspection of the power series
term by term (which is enough due to absolute convergence!) we easily check
that

G−1 · exp(tA) ·G = exp(t(G−1 ·A ·G))
Note that the equation obtained by equating the coefficients of tk is

G−1 ·Ak ·G = (G−1 ·A ·G)k

which is easily checked by “multiplying out”.

Recall that multiplying a vector by G amounts to a “linear change of co-ordinates”.
It is reasonably obvious that such a change of co-ordinates should not drastically
change the behaviour of the solutions. Hence, it is natural to ask for the “simplest”
form to which we can bring A by replacing it by G−1 ·A ·G.

The answer to this question is via the Jordan canonical form. For any matrix A
(with coefficients lying within the field of complex numbers):

• A is of the form S + N where S and N are linear combinations of 1 and
the powers of A

• N is nilpotent; some power of N is 0
• S is semi-simple; it is diagonalisable over the field of complex numbers.

From the first statement it follows easily that S ·N = N · S. Since we do not
want to deal with complex numbers (measurements in science have to do with
real numbers) we will employ a slightly different version of this result as given
below.
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Jordan Canonical Form for matrices over real numbers

For some chosen suitable order of the eigenvalues of the matrix S as above, let G′

denote the change of co-ordinates to the basis consisting of eigenvectors. Then
for a suitable choice of this order we can ensure that N consists mostly of 0’s
except possibly some 1’s above the diagonal. A little bit of further algebraic
manipulation using the fact that S is a matrix with real entries can be used to
find a matrix G so that the following form holds.

• G−1AG takes the block diagonal form

G−1AG =


A1 0 . . . 0
0 A2 . . . 0
...

... . . . ...
0 0 . . . Ap


• Further, the matrices Ak are square matrices that themselves have the

block form

Ak =


Sk 1mk

0 . . . 0
0 Sk 1 . . . 0
0 0 Sk . . . 0
...

...
... . . . ...

0 0 0 . . . Sk


where Sk is a square matrix of size mk. Note that it is the same square
matrix that occurs in each block on the diagonal.

• The value of mk is ether 1 or 2. In the first case Sk is just a 1× 1 matrix,
i.e. a scalar S = (ak). In the second case (mk = 2) we have

Sk =
(

ak −bk

bk ak

)
for some real numbers ak and bk, where bk is non-zero.

• Moreover, G−1SG is actually of the form

G−1SG =


B1 0 . . . 0
0 B2 . . . 0
...

... . . . ...
0 0 . . . Bp


where Bk is “like Ak but leave out the 1’s above the diagonal”. In other
words,

Bk =


Sk 0 0 . . . 0
0 Sk 0 . . . 0
0 0 Sk . . . 0
...

...
... . . . ...

0 0 0 . . . Sk
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with Sk as before. It follows that G−1NG = G−1AG − G−1SG is the
“remaining 1’s” which makes a strictly upper triangular matrix which has
some 1’s above the diagonal, where there is at most one 1 in each row.

As seen above, the matrix G corresponds to a linear change of co-ordinates.
Thus, to understand exp(tA) upto a linear change of co-ordinates, we need to
understand G−1 exp(tA)G. Since S and N commute, we see that exp(t(S+N)) =
exp(tS) exp(tN). The term exp(tN) is rather simple as seen above, since Nk = 0
for some k, which gives a simple direct formula for exp(tN). To understand
G−1 exp(tS)G we note that it has a block diagonal form with blocks made of
exp(tSk) for various values of k.

If mk = 1, then Sk is a scalar 1 × 1 matrix and exp(tSk) = (exp(tak)). In

the cse mk = 2 we use the matrix I =
(

0 −1
1 0

)
introduced earlier to write

Sk = ak12 + bkI. Since I commutes with 12, it follows that

exp(tSk) = exp(tak12) · exp(tbkI) = exp(tak) ·
(

cos(tbk) − sin(tbk)
sin(tbk) cos(tbk)

)
In other words we have a scaling (or shrinking!) times a rotation.

In summary, the flow associated with exp(tA) is “made up” of the three types
of flows that we studied earlier: scaling, rotation and shear.

Roots of the characteristic polynomial

Given a square matrix A, its characteristic polynomial is defined as det(t1−A).
Moreover, if G is an invertible matrix, then det(G−1BG) = det(B) for any
matrix B. It follows that the characteristic polynomial of A is the same as the
characteristic polynomial of G−1AG. Since the latter is a block diagonal matrix
for a suitable choice of G as above, we see that the characteristic polynomial of A
is the product of the characteristic polynomials of Ak. One again exploiting the
block form of Ak, one can show (though this is a little more difficult) that the
characteristic polynomial is the Mk-th power of the characteristic polynomial of
Sk where Mk is the number of row (or column) blocks in Ak; note that this is
the same as the size of Ak divided by mk.

It follows that any root of the characteristic polynomial of A is a root of
det(t11 − Sk) for a suitable k.

Examples

To make the above process clearer, let us study a few examples. Consider a
general 2 × 2 matrix A =

(
a b
c d

)
. We need to find a suitable G to put A in

canonical form.
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First of all, the characteristic polynomial of A is (t−a)(t−d)−bc, or equivalently
t2 − (a + d)t + (ad − bc). This is a quadratic polynomial and we have three
possibilities: - It is of the form (t − p)(t − q) for distinct real numbers p and
q - It is of the form (t − p)2 - It is of the form (t − p)2 + q2 for q a positive
real number. When t − p divides the characteristic polynomial, we see that
det(p12 − A) = 0 and so there is a non-zero vector ~vp (an eigenvector for A)
such that (p12 − A) · ~vp = 0, or equivalently A · ~vp = p ~vp. Hence, in the first
case, we have a pair of eigen-vectors ~vp and ~vq associated with the roots t = p
and t = q of the characteristic polynomials.

Exercise: Given distinct roots p1, . . . , pr of the characteristic polynomial, show
that the associated eigenvectors ~v1, . . . , ~vr are linearly independent.

As a consequence of this, we see that the column vectors ~vp, ~vq form a 2 × 2

invertible matrix G. We check easily that G−1AG =
(

p 0
0 q

)
which is in (block)

diagonal form.

In the second case, we note that (A− p12)2 = 0 so that A− p12 is a nilpotent
matrix. In a suitable basis, we know that it is a strictly upper triangular matrix.
In fact, in a suitable basis it is either the matrix of 0’s or

(
0 1
0 0

)
. So, this is the

change of basis that puts A in canonical form. Note that there two possible flows
for this characteristic polynomial: the scaling by exp(tp) or the same scaling
multiplied by a shearing operation.

In the last case, we consider the matrix J = (A− p12)/q. This matrix satisfies
J2 = −12. It follows that for any non-zero vector ~v, the vectors ~v and J · ~v are
linearly independent. In the change of basis given by these two vectors, one sees
that the matrix of J becomes

(
0 −1
1 0

)
. In other words, the matrix of A in this

basis becomes
(

p −q
q p

)
which is the required block form.

The case of matrices of larger size is certainly more complicated than that
above. For example, we would need to have some way to find the roots of the
characteristic polynomial. Moreover, having found them we also need to find
the corresponding eigenvectors and so on. The theorem about Jordan canonical
forms assures us that these steps can indeed be carried out.

As an example, we examine the case of a 4 × 4 matrix A. In this case, the
characteristic polynomial has degree 4. The possible ways in which this splits
up is:

• Two distinct quadratic polynomials ((t − p)2 + q2)((t − u)2 + v2) where
p, q, u, v are real numbers and both q and v are positive.

• The square of a quadratic polynomial ((t− p)2 + q2)2 where p, q are real
numbers and q is positive.
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• The product of a quadratic polynomial and two linear factors ((t− p)2 +
q2)(t− u)(t− v) with p, q, u, v real numbers, q positive and u 6= v.

• The product of a quadratic polynomial and the square of a linear factor
((t− p)2 + q2)(t− u)2 with p, q, u real numbers and q positive.

• The product of 4 linear factors (t − p)(t − q)(t − u)(t − v) with p, q, u, v
distinct real numbers.

• The product of 2 linear factors and the square of a linear factor (t− p)(t−
q)(t− u)2 with p, q, u distinct real numbers.

• The product of a linear factor and the third power of a linear factor
(t− p)(t− q)3 with p, q distinct real numbers.

• The product the square of a linear factor and the square of another linear
factor (t− p)2(t− q)2 with p, q distinct real numbers.

• The fourth power of a linear factor (t− p)4.

In each case, the block structure of the semi-simple part S is determined by the
number of distinct factors and the power of each distinct factor determines the
number of repetitions of the associated block. If there is a repeated factor, then
there could be a nilpotent block associated with it.
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