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Multi-variate data
Typically, multi-variate data is provided as a table with rows corresponding to “individual” samples

and columns giving the values of various measurements for those samples. For example, R  has a

data table called cars .

dim(cars)

[1] 50  2

We can look 4 randomly chosen measurements:

cars[sort(sample(c(1:50),4)),]

speed

<dbl>

dist

<dbl>

4 7 22

15 12 28

24 15 20

50 25 85

4 rows

This table contains data for 50 cars about the “stopping distance” measured when a car is travelling

at a certain speed. As usual, we can get a summary of individual columns:

summary(cars)

     speed           dist       
 Min.   : 4.0   Min.   :  2.00  
 1st Qu.:12.0   1st Qu.: 26.00  
 Median :15.0   Median : 36.00  
 Mean   :15.4   Mean   : 42.98  
 3rd Qu.:19.0   3rd Qu.: 56.00  
 Max.   :25.0   Max.   :120.00  

Code



However, in most cases of multi-variate data, we are interested in the relation between the columns.

In fact, in this particular table, the data in individual columns is not of interest at all! The relation

between columns can be checked visually:

plot(cars)
lines(lowess(cars$speed,cars$dist),col="red")

lines(supsmu(cars$speed,cars$dist),col="blue")

We see that there appear to be a relation between speed and stopping-distance which loosely

speaking is: “The greater is the speed, the greater is the stopping distance”. This is already a lesson

worth learning!

However, as scientists we would like to learn if there is a more precise relation. If the relation is a

“power law”, then we expect that taking logarithms on both sides should “linearise” it. (Note that

putting log="xy"  in the parameter for the plot only changes the display, so the data being plotted

in the previous picture and the current one is the same.)

plot(cars,log="xy")
lines(lowess(cars$speed,cars$dist),col="red")

lines(supsmu(cars$speed,cars$dist),col="blue")



In both cases, we have tried to fit a smooth curve to the data to get a sense of the relation between

the two columns.

Let us assume that we sense that there is a power law relation. In other words, we feel that there is

a linear model that fits the logarithms of the colums.

model1 <- lm(log(dist)~log(speed),data=cars)
model1

Call:
lm(formula = log(dist) ~ log(speed), data = cars)

Coefficients:
(Intercept)   log(speed)  
    -0.7297       1.6024  

This tells us that if we fit a linear model to the logarithms of the columns we will get the formula

We will learn later how this linear model is calculated.

We can calculate

exp(-0.7297)

[1] 0.4820536

So roughly speaking the formula becomes:

log(dist) = −0.7297 + 1.6024 ⋅ log(speed)



This gives us a second life lesson! The relation is not linear. The stopping-distance increases faster

than the speed. (The constant  is just something to do with the chosen units.)

There is more to the linear model! We would like to know how well this model fits the data. Here is

how R  summarises the model.

summary(model1)

Call:
lm(formula = log(dist) ~ log(speed), data = cars)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.00215 -0.24578 -0.02898  0.20717  0.88289 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.7297     0.3758  -1.941   0.0581 .  
log(speed)    1.6024     0.1395  11.484 2.26e-15 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4053 on 48 degrees of freedom
Multiple R-squared:  0.7331,    Adjusted R-squared:  0.7276 
F-statistic: 131.9 on 1 and 48 DF,  p-value: 2.259e-15

That is a lot of output! Let us try to understand it piece by piece.

First of all, there is just the statement of what model we are examining.

The word “residuals” is what we can loosely called the “error” in the model; it is the difference

between the actual value and the predicted value. The second part gives the distribution of these

residuals for the linear model as expressed by the formula:

with  and .

The real data is distributed around the model and  and  would themselves be random variables

from certain distributions. The next part of the summary gives the estimated values of  and 

(essentially the expected values of these distributions) and the “standard error” in these estimates

(which is the “standard deviation” of these distributions). There are two more columns giving a

-value and a probability of  and  respectively going beyond this value. We will learn more

about this later; suffices at this point to say that these columns give an idea of how erroneous the

values of  and  might be and what is the probability that model does not really fit!

All this is fine, but we would much prefer a visual representation as we have been doing so far.

stopping distance = 0.5 ⋅ (speed)1.6

0.5

log(dist) = A + B ⋅ log(speed)

A = −0.7297 B = 1.6024
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A B
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#par(mfrow=c(2,2))
plot(model1)



This is again a lot of information!

First notice that in each case the vertical axis is labelled as “Standardized Residuals” (in the third

one it is the square root). This value is the residual divided by the standard deviation of all the

residuals.

The first plot merely shows how these values are distributed as compared with the “fitted” (or model)

values. Note that the -axis is now given by the model values of  based on the tabulated

value of .

The next plot on the right compares the standardized residuals against the “standard” (essentially

normal) distribution by using a Quantile-Quantile plot. This seems to be quite a good fit. In other

words, it does seem as if the (Standardized) residuals are normally distributed. Such a fit is often

considered an indication that the model is a good one. Note that there are a few points well outside

x log(dist)
log(speed)



the “ideal” Q-Q plot.

The next plot is the scale and location plot. The expected distribution of the residuals has two

parameters, the location is determined by the expectation and the scale is determined by the

variance. This plot allows us to visualise around each fitted value, how far the actual values deviate

from the model.

The last plot uses a number of terms which we cannot explain at this point of the course! “Leverage”

denotes the extent to which a particular data point affects the values in our model. In other words, it

is helpful in determining which data-points are “outliers” and could perhaps be excluded so as to

make the model fit the remaining data better.


