First Mid-Sem Exam

Write your name and/or registration number in the box provided. Write your answers in space provided. You have 1 hour to complete this exam.

Name:____

Reg.	No:
------	-----

Question:	1	2	3	Total
Points:	13	4	3	20
Score:				

1. As usual, the space C consists of all Cauchy sequences of complex numbers with norm of a sequence (z_n) given by

$$\|(z_n)\|_{\infty} = \sup_{n=1}^{\infty} |z_n|$$

Define the elements $e^{(N)}$ in \mathcal{C} for $N \geq 1$.

$$e_n^{(N)} = \begin{cases} 0 & \text{if } n \neq N \\ 1 & \text{if } n = N \end{cases}$$

Also define $e^{(0)}$ as the element (1, 1, ...) of C all of whose entries are 1.

(1 mark) (a) Consider the map $L: \mathbb{C}^{\infty} \to \mathcal{C}$ given by

$$(a_1,\ldots,a_N,0,0,\ldots)\mapsto \sum_{n=1}^N a_n e^{(n)}$$

Is the map L one-to-one.

(a) _____ Yes;
$$e^{(n)}$$
 are linearly independent.

(2 marks) (b) Is the image of L dense?

(b) No; The closure of the image is C_0

(1 mark) (c) What is the norm of $L((a_n))$ for a general element (a_n) of \mathbb{C}^{∞} as given above? Denote this norm as $\|\cdot\|_L$.

Solution:

$$\|(a_n)\| = \sup_{n=1}^{\infty} |a_n|$$

(1 mark) (d) Consider the map $M : \mathbb{C}^{\infty} \to \mathcal{C}$ given by

$$(a_1, \dots, a_N, 0, 0, \dots) \mapsto a_1 e^{(0)} + \sum_{n=1}^N a_{n+1} e^{(n)}$$

Is the map M one-to-one.

(d) _____ Yes;
$$e^{(n)}$$
 are linearly independent

(2 marks) (e) Is the image of *M* dense?

(e) _____ Yes;
$$\mathcal{C} = \mathcal{C}_0 + \mathbb{C}e^{(0)}$$

(1 mark) (f) What is the norm of $M((a_n))$ for a general element (a_n) of \mathbb{C}^{∞} as given above? Denote this norm as $\|\cdot\|_M$.

Solution:

$$||(a_n)|| = \sup_{n=1}^{\infty} |a_1 + a_{n+1}|$$

(2 marks) (g) Determine a constant C so that

$$\sup\{\|(a_n)\|_M: \|(a_n)\|_L = 1\} \le C$$

Solution: If $\sup_{n=1}^{\infty} |a_n| \leq 1$, then

$$|a_1 + a_{n+1}| \le |a_1| + |a_{n+1}| \le 2$$

Hence C = 2 will work.

(2 marks) (h) Determine a constant D so that

$$\sup\{\|(a_n)\|_L: \|(a_n)\|_M = 1\} \le D$$

Solution: Note that for each (a_n) in \mathbb{C}^{∞} , there is an N so that $a_n = 0$ for n > N. So if $\sup_{n=1}^{\infty} |a_1 + a_{n+1}| \le 1$, then $|a_1| \le 1$. It follows that

$$|a_{n+1}| \le |-a_1| + |a_1 + a_{n+1}| \le 2$$

Hence D = 2 will work.

(1 mark)

(i) What is the relation between the two topologies on \mathbb{C}^{∞} induced by the two norms?

(i) Topologies are the same since norms are equivalent

2. As usual, the space ℓ_1 consists of all sequences (z_n) of complex numbers such that $\sum_{n=1}^{\infty} |z_n| < \infty$ on which we have the norm

$$||(z_n)||_1 = \sum_{n=1}^{\infty} |z_n|$$

Also, the space C consists of all Cauchy sequences of complex numbers with norm of a sequence (z_n) given by

$$\|(z_n)\|_{\infty} = \sup_{n=1}^{\infty} |z_n|$$

We define the map $S: \ell_1 \to \mathcal{C}$ by

$$(z_n) \mapsto (w_n = \sum_{k=1}^n z_k)$$

Mark each of the following statements as True or False.

(1 mark) (a) This map is one-to-one.

(a) ______ True;
$$w_1 = z_1, w_2 - w_1 = z_1$$
 and so on.

(1 mark) (b) This map is continuous.

(b) True; In fact its norm is clearly
$$\leq 1$$

(1 mark) (c) This map preserves the norm.

(c) **False;** a = (1/2, -1/2, 0, ...) maps to b = (1/2, 0, ...) and $||a||_1 = 1$ but $||b||_{\infty} = 1/2$. (1 mark) (d) This map is onto.

- (d) **False;** (1, 1 1/2, 1 1/2 + 1/3, ...) is not in the image.
- 3. Given an inner product space V over \mathbb{R} and vector u in V such that ||u|| = 1 in the induced norm.
- (1 mark) (a) Is the following map a continuous linear functional on V?

$$w \mapsto \langle w, u \rangle$$

(a) Yes;
$$|\langle w, u \rangle| \le ||w||$$

(1 mark) (b) Is the following map a norm-preserving map from V to V?

$$w \mapsto w - \langle w, u \rangle u$$

	(b)	No; u maps to 0.	
(1 mark)	(c) Is the following a	map a continuous <i>onto</i> map from V to V ?	
		$w \mapsto w - 2 \langle w, u \rangle u$	

(c) Yes; It is reflection in plane perpendicular to *u*