1 Normed Spaces

A norm on a vector space V is a function $\|\cdot\|: V \to \mathbb{R}^{\geq 0}$ which satisfies:

- 1. (Definiteness) ||a|| = 0 if and only if a = 0.
- 2. (Scaling) $||z \cdot a|| = |z| \cdot ||a||$ for all z in \mathbb{C} and for all a in V.
- 3. (Triangle Inequality) $||a + b|| \le ||a|| + ||b||$ for all a and b in V.

Exercise: Note that we can define a metric on V by putting d(a, b) = ||a - b||. Show that the multiplication $\mathbb{C} \times V \to V$ and addition $V \times V \to V$ are continuous with respect to this metric.

We will study various spaces obtained from various norms on \mathbb{C}^{∞} . We have already seen \mathcal{C} , \mathcal{C}_0 , ℓ_1 and ℓ_{∞} .

Note that given a norm on V, we can define d(a, b) = ||a - b||.

Exercise: Show that d defines a metric on V.

As a result, we can also define a topology on V using the metric.

Exercise: Check that a set of the form $B_{\epsilon}^{\circ}(0) = \{a : ||a|| < \epsilon\}$ is an open set containing 0.

The set $B_{\epsilon}^{\circ}(0)$ is called an *open ball* around 0 in V of radius ϵ .

Exercise: Check that *any* open neighbourhood of 0 contains a set of the form $B_{\epsilon}^{\circ} = \{a : ||a|| \leq \epsilon\}$ for a suitable ϵ .

Exercise: Check that the closure of $B_{\epsilon}^{\circ}(0)$ is the set $B_{\epsilon}(0) = \{a : ||a|| \le \epsilon\}$.

The set $B_{\epsilon}(0)$ is called a *closed ball* around 0 in V of radius ϵ .

1.1 Continuous Linear Maps

Given normed linear spaces V and W, we can study continuous linear maps between them. By definition, such a map $L: V \to W$ is linear *and* continuous. The continuity of L at 0 means that there is an $\delta > 0$ so that if x satisfies $d_V(x,0) < \delta$, then $d_W(L(x),0) < 1$ (here we are using the subscript to denote the space of the metric and norm.

Exercise: Check that $||L(x)||_W < (1/\delta) ||x||_V$ for all x in V.

Conversely, suppose that $L: V \to W$ is a linear map and r > 0 a positive real number so that $||L(x)||_W \leq r ||x||_V$ for all x in V. Such a linear map is called a *bounded* linear map.

Exercise: Check that $d_W(L(x), L(y)) \leq r d_V(x, y)$ for all x and y in V.

The above condition is sometimes called the Lipschitz condition on the map L.

Exercise: Check that a map between metric spaces that satisfies the Lipschitz condition is continuous.

As a result we see that a map between normed spaces is continuous if and only it is Lipschitz continuous. Moreover, the latter condition is equivalent to the condition that there is an r > 0 so that $||L(x)||_W < r||x||_V$ for all x in V. In other words, the notions of bounded linear maps and continuous linear maps coincide.

We define the *norm* of a continuous linear map $L: V \to W$ by

$$||L|| = \sup\{||L(x)|| : ||x|| \le 1\}$$

We note that this exists since the right-hand side is bounded as proved above.

Exercise: Check that $||L(x)|| \le ||L|| \cdot ||x||$ for all x in V.

Given a linear map $L: V \to W$, and a complex number z, it is clear that $zL: V \to W$ defined by $(zL)(x) = z \cdot L(x)$ is also a linear map. Moreover:

Exercise: Check that if L is continuous, then $||z \cdot L|| = |z| \cdot ||L||$, so that zL is continuous as well.

Similarly, if $L: V \to W$ and $M: V \to W$ are continuous linear maps then we have:

Exercise: Check that for every x in V we have

$$||L(x) + M(x)|| \le (||L|| + ||M||) \cdot ||x||$$

It follows that if we define (L + M)(x) = L(x) + M(x), then $L + M : V \to W$ is also a continuous linear map and $||L + M|| \le ||L|| + ||M||$. The above two statements thus show that the collection

 $B(V, W) = \{L : V \to W \text{ such that } L \text{ is continuous linear } \}$

is also a normed linear space.

Given a continuous linear map $L: V \to W$ and another $M: W \to U$, we have

$$||L(x)|| \le ||L|| \cdot ||x|| \ \forall x \in V$$

and

$$||M(y)|| \le ||M|| \cdot ||y|| \ \forall y \in W$$

It follows that

$$\|(M \circ L)(x)\| \le \|M\| \cdot \|L\| \cdot \|x\| \ \forall x \in V$$

Thus, we see that $M \circ L : V \to U$ is a continuous linear map and $||M \circ L|| \le ||M|| \cdot ||L||$.

1.2 Continuous linear functionals

A special important case of B(V, W) is when $W = \mathbb{C}$ is just the standard 1dimensional vector space with the usual norm. We use the notation V^* for the space $B(V, \mathbb{C})$ and call it the *dual* space of V; note that it is (in general) *strictly* smaller than the space of *all* (not necessarily continuous) linear functionals. We have already seen examples of this in the context of the space of sequences.

Given a linear functional $f: V \to \mathbb{C}$ we can break it into its real and imaginary parts $f = g + \iota \cdot h$, where $g, h: V \to \mathbb{R}$ are *real* linear functionals. We note that

$$f(\iota \cdot v) = \iota \cdot f(v) = \iota \cdot g(v) - h(v)$$

On the other hand,

$$f(\iota \cdot v) = g(\iota \cdot v) + \iota \cdot h(\iota v)$$

This shows that g and h determine each other by the formula

$$g(v) = h(\iota \cdot v)$$
 and $h(v) = -g(\iota \cdot v)$

Conversely, given a linear functional $g: V \to \mathbb{R}$, we can define $f: V \to \mathbb{C}$ by the formula $f(v) = g(v) - \iota \cdot g(\iota \cdot v)$. (Note that since V is a *complex* vector space, the notion of ιv makes sense for any vector v in V.)

Exercise: Check that $f: V \to \mathbb{C}$ as defined above is a \mathbb{C} -linear functional on V.

We can define the norm $||g|| = \sup\{|g(v)| : ||v|| \le 1\}$. Since $|g(v)| \le |f(v)|$ we see that $||g|| \le ||f||$.

Exercise: Given $\epsilon > 0$, there is a vector v such that $||v|| \le 1$ and $|f(v)| > ||f|| - \epsilon$.

In particular, by taking $\epsilon < \|f\|$ we have $f(v) \neq 0$. We then put $w = \frac{|f(v)|}{f(v)}v$.

Exercise: Check that f(w) = |f(v)| and ||w|| = ||v||.

It follows that g(w) = |f(v)| and thus, $||g|| \ge |g(w)| > ||f|| - \epsilon$. Since we have this for all sufficiently small ϵ , it follows that $||g|| \ge ||f||$. In other words, we see that ||g|| = ||f||.

1.3 Hahn-Banach Theorem

So far, we have talked about the space B(V, W), but we have not shown that it is non-zero! If x is a non-zero vector in W, we can define a linear map $e_x : \mathbb{C} \to W$ be defining $z \mapsto zx$.

Exercise: Show that e_x is a linear map and $||e_x|| = ||x||$.

It follows that $B(\mathbb{C}, W)$ can be identified with W and is non-zero if W is non-zero. To get a non-zero element of B(V, W) for a general V, we can try to first

create a non-zero element of $B(V, \mathbb{C})$ and then compose with the e_x . So the problem is to find a non-zero element of V^* .

If V is one dimensional, and $x \in V$ is a non-zero element, we have a continuous linear map $e_x : \mathbb{C} \to V$ given by $z \mapsto zx$ as above.

Exercise: The map e_x is 1-1 and onto when V is one dimensional. Moreover, in this case, its inverse is a continuous linear functional $f: V \to \mathbb{C}$ with ||f|| = 1/||x|| and f(x) = 1.

Replacing f by its multiple ||x|| f, we see that in case V is one dimensional there is a continuous linear functional $f: V \to \mathbb{C}$ so that f(x) = ||x|| and ||f|| = 1.

More generally, given any normed space V and a non-zero vector x we can produce a linear functional $f: W = \mathbb{C}x \to \mathbb{C}$ so that ||f|| = 1. The Hahn-Banach theorem stated below allows us to extend this to all of V.

Hahn-Banach Theorem: Given a normed space V, a subspace W of V and a linear functional $f: W \to \mathbb{C}$ such that ||f|| = 1 as a linear functional on W. Then there is a linear functional $g: V \to \mathbb{C}$ such that ||g|| = 1 and g restricts to f on W.

This result is proved using Zorn's lemma as follows. Consider the collection \mathcal{F} of pairs (U,h) where U is a subspace of V containing W, and $h: U \to \mathbb{C}$ is a linear functional such that ||h|| = 1 and h restricts to f on W. This has a partial order by declaring $(U,h) \leq (U',h')$ if $U \subset U'$ and h' restricts to h on U. Given any totally ordered chain $\{(U_i,h_i)\}$ in \mathcal{F} , we form $U = \bigcup_i U_i$ and define $h: U \to \mathbb{C}$ by $h(u) = h_i(u)$ if $u \in U_i$.

Exercise: Show that U is a subspace of V and that h is a linear functional on U with ||h|| = 1.

It follows that (U, h) bounds this totally ordered chain. By Zorn's lemma, there is a maximal element (U, h) in \mathcal{F} . We will prove by contradiction that U = V. To do this, we need the following extension argument which shows that if U is a proper subspace of V, then h can be extended to a larger subspace keeping the norm as 1. This contradicts the maximality of (U, h), thereby proving U = Vby contradiction as required.

1.3.1 Extending a linear functional

Given a normed linear space V and a subspace W, suppose we have a continuous linear functional $f: W \to \mathbb{C}$ with ||f|| = 1. What we want to do is to extend it to a larger subspace of V.

Let us therefore assume that $x \in V \setminus W$ is a vector and consider the subspace $U = W + \mathbb{C} \cdot x$. We want to define a continuous linear functional $g: U \to \mathbb{C}$ so that g restricts to f on $W \subset U$ and ||g|| = 1.

Exercise: Show that every element of U can be *uniquely* written in the form $w + t \cdot x$ for w in W and t a complex number.

Exercise: Choose any complex number z and define $h_z : U \to \mathbb{C}$ by the formula $h_z(w + t \cdot x) = f(w) + t \cdot z$ using the expression above. Prove that h_z is linear and h_z restricts to f on W.

However, we have not proved that h_z is continuous. So the only task we have is to choose z suitably so that $||h_z|| = 1$. We will now see a way to do this (in a somewhat convoluted way) using the real part of f as described earlier.

Exercise: Show that every element of U can be *uniquely* written in the form $w + p \cdot x + q \cdot (\iota \cdot x)$ for w in W and p, q real numbers.

Let $f_0: W \to \mathbb{R}$ be the real part of f. We will extend it to $g_0: U \to \mathbb{R}$ in two steps by extending it to one more dimension at a time.

Given a, b in W, we have the inequality:

$$f_0(a) + f_0(b) = f_0(a+b) \le ||a+b|| \le ||(a-x) + (x+b)|| \le ||a-x|| + ||x+b||$$

If we put $\phi(a) = f_0(a) - ||a - x||$ for $b \in W$, then:

$$\phi(a) = f_0(a) - ||x - a|| \le ||b + x|| - f_0(b) = -\phi(-b)$$

This is true for all a and b in W, Fixing b, it follows that $r = \sup_{a \in W} \phi(a)$ satisfies $r \leq -\phi(-b)$. Since this is true for all b, it follows that:

$$f_0(a) - ||a - x|| \le r \le ||b + x|| - f_0(b) \ \forall a, b \in W$$

We now define $k_0(w + t \cdot x) = f_0(w) + t \cdot r$. This defines a linear functional on $W + \mathbb{R} \cdot x$. If t > 0 and w is an element of W, then we have:

$$k_0(w+t \cdot x) = t \left(f_0(w/t) + r \right) \le t \|w/t + x\| = \|w + t \cdot x\|$$

We similarly check that:

$$k_0(w - t \cdot x) \le \|w - t \cdot x\|$$

Exercise: Combine the above calculations to show that $|k_0(w+t \cdot x)| \leq ||w+t \cdot x||$ for all w in W and all real numbers t. Deduce that $||k_0|| = 1$. (Note that $||f_0|| = 1$.)

It follows that $k_0: W + \mathbb{R} \cdot x \to \mathbb{R}$ is a \mathbb{R} -linear functional which extends f_0 and has norm 1.

We can now *repeat* the above argument with $W_1 = W + \mathbb{R} \cdot x$ in place of W, $\iota \cdot x$ in place of x and k_0 in place of f_0 , to produce $g_0 : W_1 + \mathbb{R} \cdot (\iota \cdot x) \to \mathbb{R}$ which is *real* linear, extends k_0 and has norm 1.

As seen above, $U = W_1 + \mathbb{R}$, so we have a real linear functional $g_0 : U \to \mathbb{R}$ that extends f_0 which is the real part of f and so that $||g_0|| = 1$. We have seen that $g(u) = g_0(u) - \iota g(\iota \cdot u)$ is then a complex linear functional such that $||g|| = ||g_0||$. Hence we have the required extension of f to U.

1.4 Semi-norms and Closed Subspaces

A function $p: V \to \mathbb{R}^{\geq 0}$ is called a semi-norm if it satisfies:

- 1. (Linearity) $p(z \cdot a) = |z| \cdot p(a)$ for all z in \mathbb{C} and for all a in V.
- 2. (Triangle Inequality) $p(a+b) \leq p(a) + p(b)$ for all a and b in V.

In other words, it does not have the additional property $p(a) = 0 \implies a = 0$ which a norm has. Consider the set $N(p) = \{v : p(v) = 0\}$.

Exercise: Check that N(p) is stable under scalar multiplication and addition of vectors in V.

In other words, N(p) is a subspace. In addition,

Exercise: Given v in V and w in N(p) check that p(v+w) = p(v).

As a consequence p induces a function $q:V/W\to \mathbb{R}^{\geq 0}$ on the quotient linear space V/W.

Exercise: Check that q defines a norm on V/W.

Conversely, it is easy to see that a norm on V/W gives, by composition with the natural linear map $V \to V/W$, a semi-norm on V.

In the above discussion, we have not put any relation between the semi-norm on V and *any* topology on V, we only need it to be a vector space.

Given a normed space V and a subspace W, we can define a function:

 $p_W(v) = \inf\{\|v + w\| : w \in W\}$

We note that if t is a complex number with $t \neq 0$, then $||t \cdot v + w|| = |t| \cdot ||v + w/t||$

Exercise: Check that $p_W(t \cdot v) = |t| p_W(v)$ for all complex numbers t and all v in V.

Secondly, we note that

$$p_W(v) = \inf\{\|v + w_1 + w_2\| : w_1, w_2 \in W\}$$

Further, by the triangle inequality for $\|\cdot\|$, we have

$$||v_1 + v_2 + w_1 + w_2|| \le ||v_1 + w_1|| + ||v_2 + w_2||$$

Exercise: Check that $p_W(v_1 + v_2) \le p_W(v_1) + p_W(v_2)$. (Be careful with your argument since

$$\inf\{1/n + (1 - 1/n) : n \ge 2\} \neq \inf\{1/n : n \ge 2\} + \inf\{1 - 1/n : n \ge 2\}$$

In other words, p_W is a semi-norm. It follows that:

1. $N(p_W)$ is a linear subspace of V. It is obvious that it contains W.

2. p_W induces a norm on $V/(N(p_W))$.

Exercise: Given that $p_W(v) = 0$ show that for every positive integer n, there is a vector w_n in W such that $||v - w_n|| < 1/n$.

It follows that w_n is a sequence of vectors converging to v. Thus, $p_W(v) = 0$ implies that v lies in the closure of W. Conversely, if v lies in the closure of v, there is a sequence of vectors w_n in W as above. It follows that $p_W(v) < 1/n$ for all positive integers n, so $p_W(v) = 0$. Hence, $N(p_W)$ is the closure of W. So we have proved that the closure of W is a subspace and identified this with $N(p_W)$. In particular, if W is closed, we see that $N(p_W) = W$.

We have a natural linear map $V \to V/N(p_W)$. As seen above p_W induces a norm on p_W . Moreover, we have $p_W(v) = \inf_{w \in W} ||v + w|| \le ||v||$. So this linear map is continuous with respect to this norm.

More generally, if p is a semi-norm on V and is *continuous* with respect to the norm $\|\cdot\|$ on V, then there is an $\delta > 0$ so that if v satisfies $\|v\| < \delta$, then p(v) < 1.

Exercise: In this case show that $p(v) \leq (1/\delta) ||v||$ for all v in V.

It follows that the natural morphism $V \to V/N(p)$ is continuous and that N(p) is closed in V with respect to the norm topology on V. As seen above, p(v+n) = p(v) for all n in N(p). It follows that

Exercise: $p(v) \leq (1/\delta)p_{N(p)}(v)$.

We thus see that there are two norms on V/N(p), the one given by p and the one given by $p_{N(p)}$. The second norm dominates the first one in the following sense.

1.4.1 Stronger or Finer norms

If V has two norms, $\|\cdot\|_a$ and $\|\cdot\|_b$, then we can ask whether these norms can be compared. Let V_a denote the normed space with the *a* norm and V_b denote the normed space with the *b* norm. If any open set in V_b is also an open set in V_a , then the identity map $V_a \to V_b$ is continuous. As seen above, this means that there is a constant r > 0 so that

$$\|x\|_b \le r \|x\|_a \ \forall x \in V$$

It is therefore natural to say that the b norm is *dominated* by the a norm or that it is *weaker* than the a norm in this case.

Exercise: Suppose there is a constant r > 0 so that the above inequality is satisfied for all x in V. Show that the identity map $V_a \to V_b$ is continuous.

Now, it may happen that each norm is weaker than the other! In other words, it may happen that there are constants r > 0 and s > 0 so that

$$s\|x\|_a \le \|x\|_b \le r\|x\|_a \ \forall x \in V$$

In this case, we say that the norms are *equivalent*. Note that in this case the underlying topology is the same.

1.4.2 Finite supplements

Let W be a subspace of a normed linear space V and v be a vector in V that is not contained in W. We then have a subspace $U = W + \mathbb{C}v$ of V which contains W. There are two possible cases to consider.

In the first case, the closure of W in U is U. This is the same as saying the v lies in the closure of W since if w_n converges to v then $z \cdot w_n$ converges to $z \cdot v$. This can also be characterised as the case where $p_W(v) = 0$ as seen above.

In the second case, $p_W(v) > 0$ and p_W induces a norm on U/W. The latter is a 1-dimensional space and so all norms are equivalent. In fact:

Exercise: Show that $||w + z \cdot v|| \ge |z|p_W(v)$ for all complex numbers z.

It follows that $f: U \to \mathbb{C}$ defined by $f(w + z \cdot v) = z$ is a continuous linear function with norm $1/p_W(v)$. Note that that $g: U \to W$ given by $g(w+z \cdot v) = w$ can be given by the formula g(u) = u - f(u)v and is therefore continuous also. In fact:

Exercise: Show that $||w|| \le (1 + ||v||/p_W(v))||w + z \cdot v||$.

We can combine these inequalities to get:

Exercise: Show that

 $||w|| + |z| \le (1 + ||v|| / p_W(v) + 1 / p_W(v)) \cdot ||w + z \cdot v||$

We note that $||w + z \cdot v|| \le ||w|| + |z| \cdot ||v||$. Hence:

Exercise: Show that $||w + z \cdot v|| \le \max\{1, ||v||\} (||w|| + |z|)$

In other words, the given norm on U is equivalent to the norm defined by

$$||w + z \cdot v||_1 = ||w|| + |z|$$

We can generalise this inductively as follows. Let F be a subspace of V which is finite dimensional and $F \cap W = \{0\}$. If W is closed in U = W + F, then the norm on U (restricted from V) is equivalent to the norm

$$||w + f||_1 = ||w|| + ||f||_0$$

where $||f||_0$ is any norm on the finite dimensional space F. In particular, all norms on a finite dimensional space are equivalent. Moreover, the condition that W is closed in U is equivalent to the condition that p_W gives a norm on F.

1.5 Completion

Given a norm on V, we can "complete" V with respect to the associated metric. In the following sequence of definitions and exercises, we will show how this is done using the ideas developed above.

As usual we define a *Cauchy* sequence (v_n) as a sequence of vectors v_n in V such that for any $\epsilon > 0$, there is an $N(\epsilon)$ so that, if $n, m > N(\epsilon)$, then $||v_n - v_m|| < \epsilon$.

Exercise: If (v_n) and (b_n) are Cauchy sequences, then show that $(v_n + b_n)$ is also a Cauchy sequence.

Exercise: If (v_n) is a Cauchy sequence and z is a complex number then show that $(z \cdot v_n)$ is also a Cauchy sequence.

Exercise: Show that Cauchy sequences in V also form a vector space C(V) in a natural way.

Exercise: Show that the following limit exists for a Cauchy sequence (v_n) :

 $\lim_{n \to \infty} \|v_n\|$

We then use this to define a function $p: C(V) \to \mathbb{R}^{\geq 0}$ by

 $p((v_n)) = \lim_{n \to \infty} \|v_n\|$

Exercise: Check that p is a semi-norm on C(V).

Let $C_0(V)$ be the space N(p) considered above. In other words,

$$C_0(V) = \{(v_n) : \lim_{n \to \infty} ||v_n|| = 0\}$$

Exercise: Check that $C_0(V)$ is exactly the space of all sequences in V that converge to 0.

We see that $C(V)/C_0(V)$ becomes a normed linear space with the norm induced by p. There is a natural map $V \to C(V)$ given by sending a vector w to the constant sequence with $v_n = w$ for all n. This allows us to think of V as a subspace of C(V). We note that p(w) = ||w|| with respect to this inclusion. Since $||\cdot||$ is a norm on V, we see that $V \to C(V)/C_0(V)$ is an inclusion so that the norm on the latter space given by p gives existing norm on V.

The main result is that $C(V)/C_0(V)$ is complete as a metric space. To aid this, let us define a norm on C(V) by

$$\|(v_n)\| = \sup_n \|v_n\|$$

Exercise: Check that this defines a norm on C(V).

Secondly we note that $p((v_n)) \leq ||(v_n)||$ and deduce that p is continuous with respect to this norm. It follows that the map $C(V) \to C(V)/C_0(V)$ is continuous.

The proof that $C(V)/C_0(V)$ is complete and that V is dense in it now follows a familiar line of argument used to prove that C_0 is complete. It is left to the reader!