1 Normed Spaces

A norm on a vector space V is a function $\|\cdot\|: V \rightarrow \mathbb{R}^{\geq 0}$ which satisfies:

1. (Definiteness) $\|a\|=0$ if and only if $a=0$.
2. (Scaling) $\|z \cdot a\|=|z| \cdot\|a\|$ for all z in \mathbb{C} and for all a in V.
3. (Triangle Inequality) $\|a+b\| \leq\|a\|+\|b\|$ for all a and b in V.

Exercise: Note that we can define a metric on V by putting $d(a, b)=\|a-b\|$. Show that the multiplication $\mathbb{C} \times V \rightarrow V$ and addition $V \times V \rightarrow V$ are continuous with respect to this metric.

We will study various spaces obtained from various norms on \mathbb{C}^{∞}. We have already seen $\mathcal{C}, \mathcal{C}_{0}, \ell_{1}$ and ℓ_{∞}.

Note that given a norm on V, we can define $d(a, b)=\|a-b\|$.
Exercise: Show that d defines a metric on V.
As a result, we can also define a topology on V using the metric.
Exercise: Check that a set of the form $B_{\epsilon}^{\circ}(0)=\{a:\|a\|<\epsilon\}$ is an open set containing 0 .

The set $B_{\epsilon}^{\circ}(0)$ is called an open ball around 0 in V of radius ϵ.
Exercise: Check that any open neighbourhood of 0 contains a set of the form $B_{\epsilon}^{\circ}=\{a:\|a\| \leq \epsilon\}$ for a suitable ϵ.

Exercise: Check that the closure of $B_{\epsilon}^{\circ}(0)$ is the set $B_{\epsilon}(0)=\{a:\|a\| \leq \epsilon\}$.
The set $B_{\epsilon}(0)$ is called a closed ball around 0 in V of radius ϵ.

1.1 Continuous Linear Maps

Given normed linear spaces V and W, we can study continuous linear maps between them. By definition, such a map $L: V \rightarrow W$ is linear and continuous. The continuity of L at 0 means that there is an $\delta>0$ so that if x satisfies $d_{V}(x, 0)<\delta$, then $d_{W}(L(x), 0)<1$ (here we are using the subscript to denote the space of the metric and norm.
Exercise: Check that $\|L(x)\|_{W}<(1 / \delta)\|x\|_{V}$ for all x in V.
Conversely, suppose that $L: V \rightarrow W$ is a linear map and $r>0$ a positive real number so that $\|L(x)\|_{W} \leq r\|x\|_{V}$ for all x in V. Such a linear map is called a bounded linear map.

Exercise: Check that $d_{W}(L(x), L(y)) \leq r d_{V}(x, y)$ for all x and y in V.
The above condition is sometimes called the Lipschitz condition on the map L.

Exercise: Check that a map between metric spaces that satisfies the Lipschitz condition is continuous.

As a result we see that a map between normed spaces is continuous if and only it is Lipschitz continuous. Moreover, the latter condition is equivalent to the condition that there is an $r>0$ so that $\|L(x)\|_{W}<r\|x\|_{V}$ for all x in V. In other words, the notions of bounded linear maps and continuous linear maps coincide.
We define the norm of a continuous linear map $L: V \rightarrow W$ by

$$
\|L\|=\sup \{\|L(x)\|:\|x\| \leq 1\}
$$

We note that this exists since the right-hand side is bounded as proved above.
Exercise: Check that $\|L(x)\| \leq\|L\| \cdot\|x\|$ for all x in V.
Given a linear map $L: V \rightarrow W$, and a complex number z, it is clear that $z L: V \rightarrow W$ defined by $(z L)(x)=z \cdot L(x)$ is also a linear map. Moreover:

Exercise: Check that if L is continuous, then $\|z \cdot L\|=|z| \cdot\|L\|$, so that $z L$ is continuous as well.

Similarly, if $L: V \rightarrow W$ and $M: V \rightarrow W$ are continuous linear maps then we have:

Exercise: Check that for every x in V we have

$$
\|L(x)+M(x)\| \leq(\|L\|+\|M\|) \cdot\|x\|
$$

It follows that if we define $(L+M)(x)=L(x)+M(x)$, then $L+M: V \rightarrow W$ is also a continuous linear map and $\|L+M\| \leq\|L\|+\|M\|$. The above two statements thus show that the collection

$$
B(V, W)=\{L: V \rightarrow W \text { such that } L \text { is continuous linear }\}
$$

is also a normed linear space.
Given a continuous linear map $L: V \rightarrow W$ and another $M: W \rightarrow U$, we have

$$
\|L(x)\| \leq\|L\| \cdot\|x\| \forall x \in V
$$

and

$$
\|M(y)\| \leq\|M\| \cdot\|y\| \forall y \in W
$$

It follows that

$$
\|(M \circ L)(x)\| \leq\|M\| \cdot\|L\| \cdot\|x\| \forall x \in V
$$

Thus, we see that $M \circ L: V \rightarrow U$ is a continuous linear map and $\|M \circ L\| \leq$ $\|M\| \cdot\|L\|$.

1.2 Continuous linear functionals

A special important case of $B(V, W)$ is when $W=\mathbb{C}$ is just the standard 1dimensional vector space with the usual norm. We use the notation V^{*} for the space $B(V, \mathbb{C})$ and call it the dual space of V; note that it is (in general) strictly smaller than the space of all (not necessarily continuous) linear functionals. We have already seen examples of this in the context of the space of sequences.

Given a linear functional $f: V \rightarrow \mathbb{C}$ we can break it into its real and imaginary parts $f=g+\iota \cdot h$, where $g, h: V \rightarrow \mathbb{R}$ are real linear functionals. We note that

$$
f(\iota \cdot v)=\iota \cdot f(v)=\iota \cdot g(v)-h(v)
$$

On the other hand,

$$
f(\iota \cdot v)=g(\iota \cdot v)+\iota \cdot h(\iota v)
$$

This shows that g and h determine each other by the formula

$$
g(v)=h(\iota \cdot v) \text { and } h(v)=-g(\iota \cdot v)
$$

Conversely, given a linear functional $g: V \rightarrow \mathbb{R}$, we can define $f: V \rightarrow \mathbb{C}$ by the formula $f(v)=g(v)-\iota \cdot g(\iota \cdot v)$. (Note that since V is a complex vector space, the notion of ιv makes sense for any vector v in V.)

Exercise: Check that $f: V \rightarrow \mathbb{C}$ as defined above is a \mathbb{C}-linear functional on V.

We can define the norm $\|g\|=\sup \{|g(v)|:\|v\| \leq 1\}$. Since $|g(v)| \leq|f(v)|$ we see that $\|g\| \leq\|f\|$.

Exercise: Given $\epsilon>0$, there is a vector v such that $\|v\| \leq 1$ and $|f(v)|>$ $\|f\|-\epsilon$.
In particular, by taking $\epsilon<\|f\|$ we have $f(v) \neq 0$. We then put $w=\frac{|f(v)|}{f(v)} v$.
Exercise: Check that $f(w)=|f(v)|$ and $\|w\|=\|v\|$.
It follows that $g(w)=|f(v)|$ and thus, $\|g\| \geq|g(w)|>\|f\|-\epsilon$. Since we have this for all sufficiently small ϵ, it follows that $\|g\| \geq\|f\|$. In other words, we see that $\|g\|=\|f\|$.

1.3 Hahn-Banach Theorem

So far, we have talked about the space $B(V, W)$, but we have not shown that it is non-zero! If x is a non-zero vector in W, we can define a linear map $e_{x}: \mathbb{C} \rightarrow W$ be defining $z \mapsto z x$.

Exercise: Show that e_{x} is a linear map and $\left\|e_{x}\right\|=\|x\|$.
It follows that $B(\mathbb{C}, W)$ can be identified with W and is non-zero if W is nonzero. To get a non-zero element of $B(V, W)$ for a general V, we can try to first
create a non-zero element of $B(V, \mathbb{C})$ and then compose with the e_{x}. So the problem is to find a non-zero element of V^{*}.

If V is one dimensional, and $x \in V$ is a non-zero element, we have a continuous linear map $e_{x}: \mathbb{C} \rightarrow V$ given by $z \mapsto z x$ as above.

Exercise: The map e_{x} is $1-1$ and onto when V is one dimensional. Moreover, in this case, its inverse is a continuous linear functional $f: V \rightarrow \mathbb{C}$ with $\|f\|=$ $1 /\|x\|$ and $f(x)=1$.
Replacing f by its multiple $\|x\| f$, we see that in case V is one dimensional there is a continuous linear functional $f: V \rightarrow \mathbb{C}$ so that $f(x)=\|x\|$ and $\|f\|=1$.
More generally, given any normed space V and a non-zero vector x we can produce a linear functional $f: W=\mathbb{C} x \rightarrow \mathbb{C}$ so that $\|f\|=1$. The HahnBanach theorem stated below allows us to extend this to all of V.

Hahn-Banach Theorem: Given a normed space V, a subspace W of V and a linear functional $f: W \rightarrow \mathbb{C}$ such that $\|f\|=1$ as a linear functional on W. Then there is a linear functional $g: V \rightarrow \mathbb{C}$ such that $\|g\|=1$ and g restricts to f on W.
This result is proved using Zorn's lemma as follows. Consider the collection \mathcal{F} of pairs (U, h) where U is a subspace of V containing W, and $h: U \rightarrow \mathbb{C}$ is a linear functional such that $\|h\|=1$ and h restricts to f on W. This has a partial order by declaring $(U, h) \leq\left(U^{\prime}, h^{\prime}\right)$ if $U \subset U^{\prime}$ and h^{\prime} restricts to h on U. Given any totally ordered chain $\left\{\left(U_{i}, h_{i}\right)\right\}$ in \mathcal{F}, we form $U=\cup_{i} U_{i}$ and define $h: U \rightarrow \mathbb{C}$ by $h(u)=h_{i}(u)$ if $u \in U_{i}$.

Exercise: Show that U is a subspace of V and that h is a linear functional on U with $\|h\|=1$.

It follows that (U, h) bounds this totally ordered chain. By Zorn's lemma, there is a maximal element (U, h) in \mathcal{F}. We will prove by contradiction that $U=V$. To do this, we need the following extension argument which shows that if U is a proper subspace of V, then h can be extended to a larger subspace keeping the norm as 1. This contradicts the maximality of (U, h), thereby proving $U=V$ by contradiction as required.

1.3.1 Extending a linear functional

Given a normed linear space V and a subspace W, suppose we have a continuous linear functional $f: W \rightarrow \mathbb{C}$ with $\|f\|=1$. What we want to do is to extend it to a larger subspace of V.

Let us therefore assume that $x \in V \backslash W$ is a vector and consider the subspace $U=W+\mathbb{C} \cdot x$. We want to define a continuous linear functional $g: U \rightarrow \mathbb{C}$ so that g restricts to f on $W \subset U$ and $\|g\|=1$.

Exercise: Show that every element of U can be uniquely written in the form $w+t \cdot x$ for w in W and t a complex number.

Exercise: Choose any complex number z and define $h_{z}: U \rightarrow \mathbb{C}$ by the formula $h_{z}(w+t \cdot x)=f(w)+t \cdot z$ using the expression above. Prove that h_{z} is linear and h_{z} restricts to f on W.

However, we have not proved that h_{z} is continuous. So the only task we have is to choose z suitably so that $\left\|h_{z}\right\|=1$. We will now see a way to do this (in a somewhat convoluted way) using the real part of f as described earlier.
Exercise: Show that every element of U can be uniquely written in the form $w+p \cdot x+q \cdot(\iota \cdot x)$ for w in W and p, q real numbers.

Let $f_{0}: W \rightarrow \mathbb{R}$ be the real part of f. We will extend it to $g_{0}: U \rightarrow \mathbb{R}$ in two steps by extending it to one more dimension at a time.

Given a, b in W, we have the inequality:
$f_{0}(a)+f_{0}(b)=f_{0}(a+b) \leq\|a+b\| \leq\|(a-x)+(x+b)\| \leq\|a-x\|+\|x+b\|$
If we put $\phi(a)=f_{0}(a)-\|a-x\|$ for $b \in W$, then:

$$
\phi(a)=f_{0}(a)-\|x-a\| \leq\|b+x\|-f_{0}(b)=-\phi(-b)
$$

This is true for all a and b in W, Fixing b, it follows that $r=\sup _{a \in W} \phi(a)$ satisfies $r \leq-\phi(-b)$. Since this is true for all b, it follows that:

$$
f_{0}(a)-\|a-x\| \leq r \leq\|b+x\|-f_{0}(b) \forall a, b \in W
$$

We now define $k_{0}(w+t \cdot x)=f_{0}(w)+t \cdot r$. This defines a linear functional on $W+\mathbb{R} \cdot x$. If $t>0$ and w is an element of W, then we have:

$$
k_{0}(w+t \cdot x)=t\left(f_{0}(w / t)+r\right) \leq t\|w / t+x\|=\|w+t \cdot x\|
$$

We similarly check that:

$$
k_{0}(w-t \cdot x) \leq\|w-t \cdot x\|
$$

Exercise: Combine the above calculations to show that $\left|k_{0}(w+t \cdot x)\right| \leq\|w+t \cdot x\|$ for all w in W and all real numbers t. Deduce that $\left\|k_{0}\right\|=1$. (Note that $\left\|f_{0}\right\|=1$.)

It follows that $k_{0}: W+\mathbb{R} \cdot x \rightarrow \mathbb{R}$ is a \mathbb{R}-linear functional which extends f_{0} and has norm 1 .

We can now repeat the above argument with $W_{1}=W+\mathbb{R} \cdot x$ in place of $W, \iota \cdot x$ in place of x and k_{0} in place of f_{0}, to produce $g_{0}: W_{1}+\mathbb{R} \cdot(\iota \cdot x) \rightarrow \mathbb{R}$ which is real linear, extends k_{0} and has norm 1.
As seen above, $U=W_{1}+\mathbb{R}$, so we have a real linear functional $g_{0}: U \rightarrow \mathbb{R}$ that extends f_{0} which is the real part of f and so that $\left\|g_{0}\right\|=1$. We have seen that $g(u)=g_{0}(u)-\iota g(\iota \cdot u)$ is then a complex linear functional such that $\|g\|=\left\|g_{0}\right\|$. Hence we have the required extension of f to U.

1.4 Semi-norms and Closed Subspaces

A function $p: V \rightarrow \mathbb{R}^{\geq 0}$ is called a semi-norm if it satisfies:

1. (Linearity) $p(z \cdot a)=|z| \cdot p(a)$ for all z in \mathbb{C} and for all a in V.
2. (Triangle Inequality) $p(a+b) \leq p(a)+p(b)$ for all a and b in V.

In other words, it does not have the additional property $p(a)=0 \Longrightarrow a=0$ which a norm has. Consider the set $N(p)=\{v: p(v)=0\}$.
Exercise: Check that $N(p)$ is stable under scalar multiplication and addition of vectors in V.
In other words, $N(p)$ is a subspace. In addition,
Exercise: Given v in V and w in $N(p)$ check that $p(v+w)=p(v)$.
As a consequence p induces a function $q: V / W \rightarrow \mathbb{R}^{\geq 0}$ on the quotient linear space V / W.

Exercise: Check that q defines a norm on V / W.
Conversely, it is easy to see that a norm on V / W gives, by composition with the natural linear map $V \rightarrow V / W$, a semi-norm on V.
In the above discussion, we have not put any relation between the semi-norm on V and any topology on V, we only need it to be a vector space.
Given a normed space V and a subspace W, we can define a function:

$$
p_{W}(v)=\inf \{\|v+w\|: w \in W\}
$$

We note that if t is a complex number with $t \neq 0$, then $\|t \cdot v+w\|=|t| \cdot\|v+w / t\|$
Exercise: Check that $p_{W}(t \cdot v)=|t| p_{W}(v)$ for all complex numbers t and all v in V.

Secondly, we note that

$$
p_{W}(v)=\inf \left\{\left\|v+w_{1}+w_{2}\right\|: w_{1}, w_{2} \in W\right\}
$$

Further, by the triangle inequality for $\|\cdot\|$, we have

$$
\left\|v_{1}+v_{2}+w_{1}+w_{2}\right\| \leq\left\|v_{1}+w_{1}\right\|+\left\|v_{2}+w_{2}\right\|
$$

Exercise: Check that $p_{W}\left(v_{1}+v_{2}\right) \leq p_{W}\left(v_{1}\right)+p_{W}\left(v_{2}\right)$. (Be careful with your argument since

$$
\inf \{1 / n+(1-1 / n): n \geq 2\} \neq \inf \{1 / n: n \geq 2\}+\inf \{1-1 / n: n \geq 2\}
$$

In other words, p_{W} is a semi-norm. It follows that:

1. $N\left(p_{W}\right)$ is a linear subspace of V. It is obvious that it contains W.
2. p_{W} induces a norm on $V /\left(N\left(p_{W}\right)\right)$.

Exercise: Given that $p_{W}(v)=0$ show that for every positive integer n, there is a vector w_{n} in W such that $\left\|v-w_{n}\right\|<1 / n$.

It follows that w_{n} is a sequence of vectors converging to v. Thus, $p_{W}(v)=0$ implies that v lies in the closure of W. Conversely, if v lies in the closure of v, there is a sequence of vectors w_{n} in W as above. It follows that $p_{W}(v)<1 / n$ for all positive integers n, so $p_{W}(v)=0$. Hence, $N\left(p_{W}\right)$ is the closure of W. So we have proved that the closure of W is a subspace and identified this with $N\left(p_{W}\right)$. In particular, if W is closed, we see that $N\left(p_{W}\right)=W$.
We have a natural linear map $V \rightarrow V / N\left(p_{W}\right)$. As seen above p_{W} induces a norm on p_{W}. Moreover, we have $p_{W}(v)=\inf _{w \in W}\|v+w\| \leq\|v\|$. So this linear map is continuous with respect to this norm.

More generally, if p is a semi-norm on V and is continuous with respect to the norm $\|\cdot\|$ on V, then there is an $\delta>0$ so that if v satisfies $\|v\|<\delta$, then $p(v)<1$.

Exercise: In this case show that $p(v) \leq(1 / \delta)\|v\|$ for all v in V.
It follows that the natural morphism $V \rightarrow V / N(p)$ is continuous and that $N(p)$ is closed in V with respect to the norm topology on V. As seen above, $p(v+n)=$ $p(v)$ for all n in $N(p)$. It follows that
Exercise: $p(v) \leq(1 / \delta) p_{N(p)}(v)$.
We thus see that there are two norms on $V / N(p)$, the one given by p and the one given by $p_{N(p)}$. The second norm dominates the first one in the following sense.

1.4.1 Stronger or Finer norms

If V has two norms, $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, then we can ask whether these norms can be compared. Let V_{a} denote the normed space with the a norm and V_{b} denote the normed space with the b norm. If any open set in V_{b} is also an open set in V_{a}, then the identity map $V_{a} \rightarrow V_{b}$ is continuous. As seen above, this means that there is a constant $r>0$ so that

$$
\|x\|_{b} \leq r\|x\|_{a} \forall x \in V
$$

It is therefore natural to say that the b norm is dominated by the a norm or that it is weaker than the a norm in this case.

Exercise: Suppose there is a constant $r>0$ so that the above inequality is satisfied for all x in V. Show that the identity map $V_{a} \rightarrow V_{b}$ is continuous.

Now, it may happen that each norm is weaker than the other! In other words, it may happen that there are constants $r>0$ and $s>0$ so that

$$
s\|x\|_{a} \leq\|x\|_{b} \leq r\|x\|_{a} \forall x \in V
$$

In this case, we say that the norms are equivalent. Note that in this case the underlying topology is the same.

1.4.2 Finite supplements

Let W be a subspace of a normed linear space V and v be a vector in V that is not contained in W. We then have a subspace $U=W+\mathbb{C} v$ of V which contains W. There are two possible cases to consider.

In the first case, the closure of W in U is U. This is the same as saying the v lies in the closure of W since if w_{n} converges to v then $z \cdot w_{n}$ converges to $z \cdot v$. This can also be characterised as the case where $p_{W}(v)=0$ as seen above.

In the second case, $p_{W}(v)>0$ and p_{W} induces a norm on U / W. The latter is a 1-dimensional space and so all norms are equivalent. In fact:

Exercise: Show that $\|w+z \cdot v\| \geq|z| p_{W}(v)$ for all complex numbers z.
It follows that $f: U \rightarrow \mathbb{C}$ defined by $f(w+z \cdot v)=z$ is a continuous linear function with norm $1 / p_{W}(v)$. Note that that $g: U \rightarrow W$ given by $g(w+z \cdot v)=w$ can be given by the formula $g(u)=u-f(u) v$ and is therefore continuous also. In fact:

Exercise: Show that $\|w\| \leq\left(1+\|v\| / p_{W}(v)\right)\|w+z \cdot v\|$.
We can combine these inequalities to get:
Exercise: Show that

$$
\|w\|+|z| \leq\left(1+\|v\| / p_{W}(v)+1 / p_{W}(v)\right) \cdot\|w+z \cdot v\|
$$

We note that $\|w+z \cdot v\| \leq\|w\|+|z| \cdot\|v\|$. Hence:
Exercise: Show that $\|w+z \cdot v\| \leq \max \{1,\|v\|\}(\|w\|+|z|)$
In other words, the given norm on U is equivalent to the norm defined by

$$
\|w+z \cdot v\|_{1}=\|w\|+|z|
$$

We can generalise this inductively as follows. Let F be a subspace of V which is finite dimensional and $F \cap W=\{0\}$. If W is closed in $U=W+F$, then the norm on U (restricted from V) is equivalent to the norm

$$
\|w+f\|_{1}=\|w\|+\|f\|_{0}
$$

where $\|f\|_{0}$ is any norm on the finite dimensional space F. In particular, all norms on a finite dimensional space are equivalent. Moreover, the condition that W is closed in U is equivalent to the condition that p_{W} gives a norm on F.

1.5 Completion

Given a norm on V, we can "complete" V with respect to the associated metric. In the following sequence of definitions and exercises, we will show how this is done using the ideas developed above.

As usual we define a Cauchy sequence $\left(v_{n}\right)$ as a sequence of vectors v_{n} in V such that for any $\epsilon>0$, there is an $N(\epsilon)$ so that, if $n, m>N(\epsilon)$, then $\left\|v_{n}-v_{m}\right\|<\epsilon$.
Exercise: If $\left(v_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences, then show that $\left(v_{n}+b_{n}\right)$ is also a Cauchy sequence.
Exercise: If $\left(v_{n}\right)$ is a Cauchy sequence and z is a complex number then show that $\left(z \cdot v_{n}\right)$ is also a Cauchy sequence.

Exercise: Show that Cauchy sequences in V also form a vector space $C(V)$ in a natural way.

Exercise: Show that the following limit exists for a Cauchy sequence $\left(v_{n}\right)$:

$$
\lim _{n \rightarrow \infty}\left\|v_{n}\right\|
$$

We then use this to define a function $p: C(V) \rightarrow \mathbb{R}^{\geq 0}$ by

$$
p\left(\left(v_{n}\right)\right)=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|
$$

Exercise: Check that p is a semi-norm on $C(V)$.
Let $C_{0}(V)$ be the space $N(p)$ considered above. In other words,

$$
C_{0}(V)=\left\{\left(v_{n}\right): \lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0\right\}
$$

Exercise: Check that $C_{0}(V)$ is exactly the space of all sequences in V that converge to 0 .
We see that $C(V) / C_{0}(V)$ becomes a normed linear space with the norm induced by p. There is a natural map $V \rightarrow C(V)$ given by sending a vector w to the constant sequence with $v_{n}=w$ for all n. This allows us to think of V as a subspace of $C(V)$. We note that $p(w)=\|w\|$ with respect to this inclusion. Since $\|\cdot\|$ is a norm on V, we see that $V \rightarrow C(V) / C_{0}(V)$ is an inclusion so that the norm on the latter space given by p gives existing norm on V.

The main result is that $C(V) / C_{0}(V)$ is complete as a metric space. To aid this, let us define a norm on $C(V)$ by

$$
\left\|\left(v_{n}\right)\right\|=\sup _{n}\left\|v_{n}\right\|
$$

Exercise: Check that this defines a norm on $C(V)$.

Secondly we note that $p\left(\left(v_{n}\right)\right) \leq\left\|\left(v_{n}\right)\right\|$ and deduce that p is continuous with respect to this norm. It follows that the map $C(V) \rightarrow C(V) / C_{0}(V)$ is continuous.

The proof that $C(V) / C_{0}(V)$ is complete and that V is dense in it now follows a familiar line of argument used to prove that \mathcal{C}_{0} is complete. It is left to the reader!

