## Infinity in the Laws of Probability

While talking about discrete random variables, something was slipped in which actually requires a lot deeper understanding. We said that a discrete random variable $X$ takes values in integers and put $p_{i}=P(X=i)$. We put the conditions

- $0 \leq p_{i} \leq 1$, and,
- $\sum_{i} p_{i}=1$

The first condition is quite clear even when $p_{i} \neq 0$ for infinitely many $i$, but what does the second one mean? Let's look at an example which was introduced earlier. We flip a coin a number of times (independently) and let $W$ denote the first occurence of head. Assume that the probability of a head on a single flip is $p$. As seen earlier this means that $P(W=n)=(1-p)^{n-1} p$. How do we understand the following statement?

$$
1=\sum_{n \geq 1} P(W=n)=\sum_{n \geq 1}(1-p)^{n-1} p
$$

First of all, we note that $0<p<1$, so that $x=(1-p)$ has the following properties:

- $0<x<1$, and so,
- $x^{n}>x^{n+1}$ for all integers $n$.

In other words, we have a decreasing sequence $1>x>x^{2}>\cdots$. Does this mean that $\sum_{n} x^{n}$ makes sense? Not necessarily (as we shall see later)! However, in this case we have

$$
s_{n}=\left(1+x+x^{2}+\cdots+x^{n}\right)=\frac{1-x^{n+1}}{1-x} \leq 1
$$

(Note that the right-hand side makes sense since $x \neq 1$.) Now, this means that $s_{n}=\sum_{k=0}^{n} x^{k}$ (the finite sum) is always bounded by 1. It increases with $n$ but cannot increase beyond 1. By the principle of Archimedes, there is a least upper bound of the sequence $s_{n}$ and we define it to be the sum of all the $x^{n}$ for $n \geq 1$. In other words

$$
\sum_{n \geq 0} x^{n}:=\sup _{n} \frac{1-x^{n+1}}{1-x} \leq 1
$$

This still does not say what this limit is! We "know" the answer but like mathematicians, we will make a fuss about making sure that that is indeed the correct answer.

The limit is based on the following fundamental fact:

- if $0<x<1$ then as $n$ goes to infinity $x^{n}$ goes to 0 .

In order to prove this statement we need to understand what it means. One way to understand it is to say that given any $M>0$, there is an integer $n_{0}$ so that $\left|x^{n}\right|<M$ for all integers $n \geq n_{0}$.
Let us prove this somewhat indirectly as follows. By the least upper bound principle, the $i s$ some number $a \leq 1$ so that $\sum_{n \geq 0} x^{n}=a$. It folows that there is an $n_{0}$ so that $a \geq \sum_{k=0}^{n}>a-1 / M$ for $n \geq n_{0}$. It follows that $0 \leq x^{n}<1 / M$ for all such values of $n$.
It follows easily that $1-x^{n+1}$ lies between 1 and $1-1 / M$ for $n \geq n_{1}$ for a suitably chosen $n_{1}$. Thus, we obtain as a consequence that

$$
\sum_{n \geq 0} x^{n}=\frac{1}{1-x} \text { for } 0<x<1
$$

This also gives us the identity

$$
1=\sum_{n \geq 1} P(W=n)=\sum_{n \geq 1}(1-p)^{n-1} p
$$

That we were looking for earlier.

## Probabilistic Interpretation

How do we interpret the above calculation in terms of Probability? Let $E_{n}$ denote the event $W \leq n$. This is the event that we see a head in at most $n$ coin flips. We have $E_{n}=\vee_{k \leq n}(W=k)$. Thus, $P\left(E_{n}\right)=\sum_{k \leq n} P(W=n)$. Clearly, $E_{n} \subset E_{n+1}$ since seeing a head in at most $n$ flips means that we defnitely see a head in at most $n+1$ flips. Hence, $P\left(E_{n}\right) \leq P\left(E_{n+1}\right)$ is a sequence of real numbers, all of which are bounded by 1 since the probability of any event is at most 1! By the Archimedean principle, this sequence of numbers has a least upper bound denoted as $\sup _{n} P\left(E_{n}\right)$.
Let $E=\vee_{n} E_{n}$; this is the event that we see at least one head. Now, it is clear that $P(E) \geq P\left(E_{n}\right)$. The Law of Infinity in Probability is that $P(E)=\sup _{n} P\left(E_{n}\right)$.
Let's re-state it in its full generality. Given a sequence of increasing events $E_{n} \subset$ $E_{n+1}$. Their union $E=\vee_{n} E_{n}$ is also an event. Moreover, $P(E)=\sup _{n} P\left(E_{n}\right)$.

In the case of discrete probability this gives a meaning to $\sum_{i \geq 0} P(X=i)=1$. The left-hand side is the probability of the union of the events $E_{n}: X \leq n$. The right-hand side is the assertion that this union exhausts the possibility. In particular, note that we have he assertion the the probability that we will see a head at least once is 1 !

We can derive some natural consequences. Suppose we have a sequence of decreasing events $D_{n} \supset D_{n+1}$. Their intersection $D=\wedge_{n} D_{n}$ is also an event; in fact $D^{c}=\vee_{n} D_{n}^{c}$, so this follows from the previous case. Moreover, $P(D)=$
$\inf _{n} P\left(D_{n}\right)$; this too follows from the fact that $P\left(D^{c}\right)=\sup _{n} P\left(D_{n}^{c}\right)$ and the fact that $P\left(D^{c}\right)=1-P(D)$ and $P\left(D_{n}^{c}\right)=1-P\left(D_{n}\right)$.

Another application is to the case where $A_{n}$ is a sequence of mutually exclusive events. In that case $B_{n}=\vee_{k \leq n} A_{k}$ is an increasing sequence of events and $P\left(B_{n}\right)=\sum_{k \leq n} P\left(A_{k}\right)$ is a non-decreasing sequenc of numbers. Hence $\sup _{n} P\left(B_{n}\right)=\sum_{k} \bar{P}\left(A_{k}\right)$. On the other hand $B=\vee_{n} B_{n}=\vee_{k} A_{k}$. So we see that the probability of the union of mutually exclusive sequence of events is the sum of their probabilities.

