
When to Use What

While there is no magic formula to decide when to use which formalism, recog-
nising the appropriate distribution for a given situation is an important part
of statistics. This is especially so for the limiting distributions since in actual
examples we never attain the limit! Hence, the application will necessary be
imprecise and we must try to understand the errors involved.

Binomial Distribution

Let us start with the most classic example. When we are carrying out a fixed
number k of independent identical experiments and only counting the number
Xk of “successes”, the Binomial distribution gives the precise answer:

P (Xk = r) =
(
k

r

)
pr(1− p)k−r

Here p denotes the probability of success in one experiment.

While this formula is nice, its use for large k is hampered by the fact that
computing

(
k
r

)
can take a lot of time. Roughly speaking, two approximations,

the Poisson and the Normal are useful in different contexts as follows. The
Poisson distribution allows us to calculate a good approximation for the case
when k is large and p is small so that kp is not too big or too small. The normal
distribution allows us to calculate a good approximation of the case when k is
large and r is close to kp.

Poisson Distribution

In the case when the expected number c of successes of an experiment is fixed,
the random variable representing the number Y of successes follows the Poisson
distribution:

P (Y = r) = cr

r! e
−c

Note the expected number of successes need not be an integer but we count Y
and so r is an integer.

A typical situation where this is applied is where the main (“big”) experiment is
divided into a large number k of independent and identical small experiments.
Each of these small experiments has expected number of successes as c/k; for
large enough k we can treat this number as the probability p = c/k of one success
for this small experiment. In that case we can approximately identify Y with
the Binomial Xk with distribution (as above):

P (Xk = r) =
(
k

r

)
pr(1− p)k−r
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The reverse situation is where we are counting success in a large number k of
experiments with very low probability p of success in each one of these. In
this case, the precise random variable we want is Xk and Y is a reasonable
approximation to it.

Negative Binomial Distribution

As in the case of the Binomial distribution, we are carrying out a sequence of
identical independent experiments. However, in this case, we keep repeating the
experiment until we have exactly k failures. The random variable Xk counts the
number of successes prior to reaching k failures.

P (Xk = r) =
(
k + r − 1

r

)
pr(1− p)k

Here p represents the probability of success. Note that this is the same as the
probability that out of k + r − 1 experiments there are k − 1 failures and that
the next experiment results in a failure as well. This is because we stop as soon
as there are k failures and then count the successes that we have had so far.

Obviously, the notion of success and failure are up to us but their roless in this
distribution are not interchangeable (unlike the case of the Binomial distribution).
In fact, we can repeat the experiment until we have exactly k successes and let
Yk count the number of failures that we have to contend with. This would satisfy

P (Yk = r) =
(
k + r − 1

r

)
(1− p)rpk

assuming the same probability p for success in an individual experiment as
before.

Waiting time or Poisson Density

We now move to a situation where we are observing a system continuously for a
certain phenomemon and that the frequency of occurrence of this phenomenon
(in unit time) is c. LetWk denote the random variable that measures the amount
of time elapsed until k occurences. The probability distribution of Wk is given
by P (Wk < 0) = 0 and

FWk
(t) = P (Wk ≤ t) =

∫ t

0

cksk−1

(k − 1)!e
−csds

In other words, the probability density is given by

fWk
(t) = cktk−1

(k − 1)!e
−ct
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Since time is actually measured by counting intervals (like the ticking of a second
hand) rather than continuously, we can usefully approximate this as follows.

Consider a metronome that ticks n times per unit time for some large n. We now
consider a series of “small” experiments that checks for the occurrence of the
phenomenon within this small interval; we assume that this is so small that this
can happen at most once. Thus we can think of the probability of occurrence of
the event in this small interval as c/n since that is its frequency in this small
unit. In these terms, we are waiting for k successes, and stopping at the k-th
success. If there are r intervals for which we did not see anything happening,
then t = (r + k)/n is the total amount of time we wait. The probability of this
is given by the Negative Binomial distribution as above:

P (Yk = r) =
(
k + r − 1

r

)
(1− p)rpk

where p = c/n and r = tn− k. Equivalently,

P (Yk = tn−k) =
(
tn− 1
tn− k

)
(1−c/n)tn−k(c/n)k = (tn− 1) . . . (tn− k − 1)

(k − 1)! (1/n)k−1ck(1−c/n)tn−k(1/n)

For large n we can see the first two terms are asymptotic to tk−1, the fourth
term asymptotic to e−ct and the last 1/n is the small time difference δt; this can
be used to show that the Poisson density is the limiting distribution.

As in the case of the discrete Poisson distribution, we can reverse this and use
the Poisson density to calculate an approximate value for the Negative Binomial
distribution when k is fixed (and not large) and p is very small.

Normal Distribution

A random variable N following the Normal distribution with mean µ and variance
σ2 is given by the probability density:

fN (t) = 1
σ
√

2π
e−(t−µ)2/2σ2

Equivalently, the distribution function is given by

FN (t) = 1
σ
√

2π

∫ t

−∞
e−(u−µ)2/2σ2

du

This distribution arises as an asymptotic distribution in many situations.

One example of this is the de Moivre Laplace theorem which is stated as follows.
Consider the random variable Xk which follows the Binomial distribution for a
large k. The de Moivre Laplace approximation is

P (a < Xk − kp√
kp(1− p)

≤ b) '
∫ b

a

1√
2π
et

2/2dt as k →∞
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We note that kp is the expectation of Xk and kp(1− p) is the variance of Xk.
We will see a generalisation of this later as the Central Limit Theorem.
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