
Integers, Polynomials, Matrices
MTH302 End Semester Exam 29 November, 2016

Solutions to End-Sem Exam

1. Give the number or the example as indicated below.

(a)(1 mark) The number of units in the ring Z/36Z.

Solution: By the Chinese Remainder Theorem, we need to calculate the num-
ber of units in Z/4Z and Z/9Z and multiply these. In the first case, there are
2 = 4 − 2 units and in the second case there are 6 = 9 − 3 units. So all in all
there are 12 = 2× 6 units.

(b)(1 mark) The number of elements k in the ring Z/36Z for which 6k = 0.

Solution: We need to solve 6k = 36m or equivalently k = 6m in this ring.
This consists of {0, 6, 12, 18, 24, 30} or 6 elements.

(c)(1 mark) An example of an idempotent in the ring Z/30Z which is different from 0 and 1.

Solution: By the Chinese Remainder Theorem, we need to look at elements
that are 0 or 1 in Z/2Z, Z/3Z and Z/5Z. This approach gives us the elements
{0, 1, 6, 15, 10, 21, 25, 16}. So any of the last six is a permissible answer. Note
that 62 = 36 = 6 (mod 30) so that is an “easy” answer.

(d)(1 mark) An example of a non-zero prime ideal in the ring Q[T ].

Solution: We need an irreducible polynomial over Q. The polynomial T is
such an example.

(e)(1 mark) An example of an idempotent element in the ring Q[T ]/(T 3 − T ) which is different
from 0 and 1.

Solution: By the Chinese Remainder Theorem, we need to look at elements
that are 0 or 1 in Q[T ]/T , Q[T ]/(T − 1) and Q[T ]/(T + 1). These elements are
{0, 1, (T 2 − T )/2, (T 2 + T )/2, 1 − T 2, T 2, 1 + (−T 2 − T )/2, 1 + (−T 2 + T )/2}.
So any of the last six is a permissible answer. Note that T 4 = T (T 3) = T 2, so
that is an “easy” answer.

(f)(1 mark) An example of a quaternion which does not commute with î.

Solution: Any quaternion that has a non-zero component of the form aĵ + bk̂
is such a quaternion. For example k̂.

(g)(1 mark) An example of an orthogonal 2× 2 matrix with determinant -1.



Solution: This is a reflection matrix. For example

(
0 1
1 0

)
.

(h)(1 mark) An example of a 2× 2 unitary matrix for which at least one entry is not real.

Solution: Any diagonal matrix with diagonal entries of absolute value 1 is

unitary. Hence,

(
ι 0
0 1

)
is such a matrix.

(i)(1 mark) An example of a matrix over C which cannot be diagonalised.

Solution: Any non-zero nilpotent matrix cannot be diagonalised. Hence,

(
0 1
0 0

)
is such a matrix.

(j)(1 mark) An example of a quadratic form which is not positive-semi-definite.

Solution: Any diagonal form which has a negative term is such a quadratic
form. Hence q(x) = −x2 is such a form.

2.(5 marks) Write down (upto isomorphism) all the possible abelian groups of order 72 that are
generated by at most 3 elements. (Hint: What are all the Smith normal matrices A so
that the group is Z3/AZ3?)

Solution: As the hint says, we need to write all diagonal 3×3 matrices with diagonal
entries a, b, c so that a divides b and b divides c and abc = 72. We write b = da and
c = eb. So we have a3d2e = 72. Since a3 divides 72, we must have a = 1 or a = 2.
since d2 divides 72, we must have d = 1, 2, 3, 6. So we have the solutions

(a, d, e) ∈ {(1, 1, 72), (1, 2, 18), (1, 3, 8), (1, 6, 2), (2, 1, 9), (2, 3, 1)}
or equivalently,

(a, b, c) ∈ {(1, 1, 72), (1, 2, 36), (1, 3, 24), (1, 6, 12), (2, 2, 18), (2, 6, 6)}
Hence there are 6 such groups.

Z/72Z
Z/2Z×Z/36Z
Z/3Z×Z/24Z
Z/6Z×Z/12Z
Z/2Z×Z/2Z× Z/18Z
Z/2Z×Z/6Z× Z/6Z

MTH302 End-Sem Exam Page 2 of 12



3.(10 marks) Using row and column reduction, find the matrices S and T with integer coefficients so
that SAT is a diagonal matrix in Smith normal form. (Hint: Be systematic and apply
the pivoting method.)

A =


6 2 3 0
8 2 2 2
8 2 2 5
4 0 4 −12



Solution: We note that column operations correspond to multiplication by elemen-
tary matrices on the right and row operations correspond to multiplication by ele-
mentary matrices on the left. We first subtract 3 times column 2 from column 1 and
also subtract column 2 from column 3

AT1 =


6 2 3 0
8 2 2 2
8 2 2 5
4 0 4 −12




1 0 0 0
−3 1 −1 0
0 0 1 0
0 0 0 1

 =


0 2 1 0
2 2 0 2
2 2 0 5
4 0 4 −12


Next we subtract 2 times column 3 from column 2

AT1T2 =

A


1 0 0 0
−3 1 −1 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

 =


0 2 1 0
2 2 0 2
2 2 0 5
4 0 4 −12




1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

 =


0 0 1 0
2 2 0 2
2 2 0 5
4 −8 4 −12


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We now subtract row 1 from row 4

S1A(T1T2) = 
1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

A


1 0 0 0
−3 3 −1 0
0 −2 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1




0 0 1 0
2 2 0 2
2 2 0 5
4 −8 4 −12

 =


0 0 1 0
2 2 0 2
2 2 0 5
4 −8 0 −12



Now we subtract column 2 from column 1 and also column 2 from column 4

S1A(T1T2)T3 =
1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

A


1 0 0 0
−3 3 −1 0
0 −2 1 0
0 0 0 1




1 0 0 0
−1 1 0 −1
0 0 1 0
0 0 0 1

 =


0 0 1 0
2 2 0 2
2 2 0 5
4 −8 0 −12




1 0 0 0
−1 1 0 −1
0 0 1 0
0 0 0 1

 =


0 0 1 0
0 2 0 0
0 2 0 3
12 −8 0 −4


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Now we subtract row 2 from row 3 and add 4 times row 2 to row 4

S2S1A(T1T2T3) =
1 0 0 0
0 1 0 0
0 −1 1 0
0 4 0 1




1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

A


1 0 0 0
−6 3 −1 −3
2 −2 1 2
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 4 0 1




0 0 1 0
0 2 0 0
0 2 0 3
12 −8 0 −4

 =


0 0 1 0
0 2 0 0
0 0 0 3
12 0 0 −4



Now we add row 3 to row 4

S3(S2S1)A(T1T2T3) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 −1 1 0
−1 4 0 1

A


1 0 0 0
−6 3 −1 −3
2 −2 1 2
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




0 0 1 0
0 2 0 0
0 0 0 3
12 0 0 −4

 =


0 0 1 0
0 2 0 0
0 0 0 3
12 0 0 −1


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Now we add 3 times row 4 to row 1

S4(S3S2S1)A(T1T2T3) =
1 0 0 0
0 1 0 0
0 0 1 3
0 0 0 1




1 0 0 0
0 1 0 0
0 −1 1 0
−1 3 1 1

A


1 0 0 0
−6 3 −1 −3
2 −2 1 2
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 3
0 0 0 1




0 0 1 0
0 2 0 0
0 0 0 3
12 0 0 −1

 =


0 0 1 0
0 2 0 0
36 0 0 0
12 0 0 −1



Now we add 12 times column 4 to column 1

(S4S3S2S1)A(T1T2T3)T4 =
1 0 0 0
0 1 0 0
−3 9 4 3
−1 3 1 1

A


1 0 0 0
−6 3 −1 −3
2 −2 1 2
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
12 0 0 1

 =


0 0 1 0
0 2 0 0
36 0 0 0
12 0 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
12 0 0 1

 =


0 0 1 0
0 2 0 0
36 0 0 0
0 0 0 −1



Finally, we only need to permute the rows and columns to get the diagonal form.
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We use P and Q to denote the appropriate permutation.

P (S4S3S2S1)A(T1T2T3T4)Q =
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0




1 0 0 0
0 1 0 0
−3 9 4 3
−1 3 1 1

A


1 0 0 0
−42 3 −1 −3
26 −2 1 2
12 0 0 1




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 36


Finally, this gives us

(PS4S3S2S1)A(T1T2T3T4Q) =
1 0 0 0
−1 3 1 1
0 1 0 0
−3 9 4 3

A


0 0 0 1
−3 −1 3 −42
2 1 −2 26
1 0 0 12

 =


1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 36



4. Consider the quadratic form q(x, y) = x2 − 2xy.

(a)(1 mark) Convert the quadratic form q(x, y) to diagonal form.

Solution: We have
x2 − 2xy = (x− y)2 − y2

(b)(1 mark) Find the matrix A so that q(x, y) = vtAv where v =

(
x
y

)
.

Solution: We write this is q(x, y) = xx− xy − yx + 0yy so that the matrix is
easily seen to be

A =

(
1 −1
−1 0

)

(c)(1 mark) Find the vector (x, y) on the unit circle where q(x, y) takes its maximum value.
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(d)(1 mark) Find the vector (x, y) on the unit circle where q(x, y) takes its minimum value.

Solution: (For both parts above). The minimum and maximum values corre-
spond to eigen-vectors of A. We calculate the characteristic polynomial of A as
(1−T )(−T )−(−1)(−1) or equivalently T 2−T−1. The roots of this polynomial
are T = (1 ±

√
5)/2. Put φ = (1 +

√
5)/2 as one eigenvalue, then the other

eigenvale is 1− φ. Moreover, φ2 = 1 + φ. We thus see that(
1 −1
−1 0

)
·
(
−φ
1

)
=

(
−1− φ
φ

)
= φ

(
−φ
1

)
Thus, (−φ, 1) is an eigenvector with eigenvalue φ.

Since the matrix is symmetric, the vector orthogonal to this is also an eigenvec-
tor. In other words (1, φ) is also an eigenvector with eigenvalue 1− φ.

To be on the unit circle, the vectors have to have unit length. Note that 1+φ2 =
2 + φ. We have the maximum value at the vector with eigenvalue φ

1√
2 + φ

(
−φ
1

)
and the minimum value at the vector with eigenvalue 1− φ

1√
2 + φ

(
1
φ

)

(e)(1 mark) Find an orthogonal matrix S so that SAS−1 is a diagonal matrix.

Solution: The matrix S−1 is the matrix of the form [v1, v2] where vi are the
unit eigenvectors. In other words,

S−1 =
1√

2 + φ

(
−φ 1
1 φ

)
It follows that det(S−1) = −1 and so (why?)

S = S−1 =
1√

2 + φ

(
−φ 1
1 φ

)
Note that S is not unique, for example, we can also interchange the columns of
S or take −S.

5.(5 marks) Decompose the following matrix into one of the forms KAK, KAN or KP.

G =

(
ι 1
1 ι

)
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Solution: We calculate

G∗G =

(
−ι 1
1 −ι

)(
ι 1
1 ι

)
=

(
2 0
0 2

)
The positive square root of this matrix is

P =

(√
2 0

0
√

2

)
It follows that

K = G · P−1 =
1√
2
G

is a unitary matrix. Moreover, we see that P is a scalar matrix hence it commutes
with anything and is also a diagonal matrix with positive diagonal entries; so we can
also put A = P . We put, N = 1 and U = K and V = 1

G = K · P = K · A ·N = U · A · V

All the decompositions are the same!

6. Given an n×n matrix A over the field C of complex numbers. Recall that an eigen-vector
is a non-zero column-n vector v so that A · v = a · v for some complex number a. Recall
that a number a for which there exists such a non-zero vector is called an eigen-vector
is called an eigen-value.

(a)(1 mark) If P (T ) is a polynomial with coefficients in C, then show that P (A) · v = P (a)v.
(Hint: First check for P (T ) = T n.)

Solution: We note, by induction on k that Ak · v = akv. For, this is given for
k = 1 and if we have shown it for k, then we have

Ak+1 · v = A · (Ak · v) = A · (akv) = ak(A · v) = ak(av) = ak+1v

Since P (A) is a linear combination of terms of the form ckA
k, the result follows.

(b)(1 mark) If QA(T ) is the minimal polynomial of A, then show that Q(a) = 0 for any eigen-
value a of A.

Solution: Since QA(T ) is the minimal polynomial of A, we have QA(A) = 0.
From the previous exercise, it follows that QA(A)·v = QA(a)v. Hence QA(a)v =
0. Since v 6= 0, it follows that QA(a) = 0.
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(c)(1 mark) Show that a is an eigen-value of A if and only if det(A−a·1) = 0. (Hint: Recall that
B ·w = 0 for a non-zero vector w and an n×n matrix B if and only if det(B) = 0.)

Solution: We note that A · v = av if and only if (A − a · 1) · v =. Now,
(A− a · 1) · v = 0 has a solution with v 6= 0 if and only det(A− a · 1) = 0. This
shows that a is an eigen-value of A if and only if det(A− a · 1) = 0.

(d)(2 marks) Show that the polynomial det(A − T · 1) divides QA(T )N for every large enough
integer N . (Hint: Use fundamental theorem of algebra.)

Solution: From what has been shown above, every solution a of det(A−a·1) =
0 also satisfies QA(a) = 0. Since C is algebraically closed, P (T ) = det(A−T ·1)
is a product of terms of the form (ai − T )ni (upto a non-zero constant factor)
where ai are the roots of the polynomial P (T ). Each of factors (ai− T ) divides
QA(T ) since any root of P (T ) is a root of QA(T ). Hence, if we take N to be
greater than the maximum of the numbers ni, then P (T ) divides QA(T )N .

7. Recall that a matrix A over a field F is said to be diagonalisable over that field if there
is a basis of F n consisting of eigen-vectors for A. In what follows, Q denotes the field
of rational numbers, F2 denotes the field with two elements and C denotes the field of
complex numbers.

Indicate which of the following statements are true. If the statement is not true provide
an example showing that it is false.

(a)(1 mark) If a matrix A over Q satisfies A2 = 1, then it is diagonalisable over Q.

Solution: Since the roots of the polynomial T 2 − 1 are 1 and −1 and are
distinct, so the matrix is diagonalisable over Q.

(b)(1 mark) If a matrix A over F2 satisfies A2 = 1, then it is diagonalisable over F2.

Solution: Since 1 = −1 in F2, the previous argument does not work! We can
take the matrix of multiplication by T on F2[T ]/(T 2−1) in the basis {1, T −1}.

This is A =

(
1 0
1 1

)
. We check easily that A2 = A over F2.

(c)(1 mark) If a matrix A over Q satisfies A3 = 1, then it is diagonalisable over Q.

Solution: Since the polynomial T 3 − 1 does not have all its roots in Q, the
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matrix need not be diagonalisable over Q. For example, we can take0 1 0
0 0 1
1 0 0


The vector v = (1, 1, 1) is fixed. In the plane v⊥ perpendicular to v, this is a
rotation by 2π/3 and so it has no other eigenvectors with entries in Q (or even
R!).

(d)(1 mark) If a matrix A over Q satisfies A3 = 1, then it is not diagonalisable over Q.

Solution: The identity matrix A = 1 satisfies A3 = 1 and it is diagonal! So
there is a matrix A for which the above statement is false.

(e)(1 mark) If a matrix A over C satisfies An = 1, for some integer n, then it is diagonalisable
over C.

Solution: The polynomial T n−1 = 0 has distinct roots in C. Since the minimal
polynomial of A divides this polynomial, we see that the minimal polynomial
of A has distinct roots. Hence, A is diagonalisable over C.

8. Consider the Q[T ] module V = Q[T ]/(T 2 − T )×Q[T ]/(T 2).

(a)(1 mark) Calculate the matrix A of multiplication by T on the vector space V in a suitable
basis.

Solution: We use the basis

{(1, 0), (T, 0), (0, 1), (0, T )}

This gives us the matrix (by simple calculation)

A =


0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 0



(b)(1 mark) Calculate the characteristic polynomial this matrix A.
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Solution: The characteristic polynomial det(A− T · 1) is

det


−T 0 0 0
1 1− T 0 0
0 0 −T 0
0 0 1 −T


We see that this is

(−T )(1− T )(−T )2 = T 3(T − 1) = T 4 − T 3

(c)(1 mark) Calculate the minimal polynomial this matrix A.

Solution: Since multiplication by this polynomial should be 0 on each factor
of V , it is the least common multiple of T 2 − T and T 2. In other words it is
T 2(T − 1) = T 3 − T 2.

(d)(1 mark) What is the Smith normal form of the matrix A− T for a variable T .

Solution: The Smith normal form has diagonal entries P1(T ), P2(T ), P3(T ),
P4(T ) where P4(T ) is the minimal polynomial and the product of these entries
is the characteristic polynomial. Since

T 4 − T 3 = T · (T 3 − T 2)

we see that we must have P1(T ) = P2(T ) = 1 and P3(T ) = T . Thus, the Smith
normal form is 

1 0 0 0
0 1 0 0
0 0 T 0
0 0 0 (T 3 − T 2)


(e)(1 mark) What is the Jordan form of A?

Solution: The Jordan form of A is a block form made by look at the matrix of
multiplication by T on Q[T ]/(Pi(T ) for each i and further factoring the Pi(T ).
The only polynomial that needs to be factored is T 3−T 2 = T 2(T−1). It follows
that the Jordan form of A is 

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1


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