headandfoot

Solutions to Assignment 1,2,3,4,9

1. (Assignment 1; 2(c)) In the pair of numbers below, which is larger? Explain why. n^{5}, $10000 \cdot(n+1)^{2}$ for large n.

Solution: Assignment 1 was only supposed to use basic arithmetic properties of numbers.

We note the high-school expansion gives, for $n \geq 1$,

$$
(n+1)^{2}=n^{2}+2 n+1 \leq n^{2}+2 n^{2}+n^{2} \leq 5 n^{2}
$$

Thus, $50000 \cdot n^{2}>10000 \cdot(n+1)^{2}$.
It is clear that for $n>50000$, we have $n^{3}>50000 \cdot n^{2}$. Since $n^{5} \geq n^{3}$ for $n \geq 1$, we see that $n^{5}>10000 \cdot(n+1)^{2}$ for $n>50000$.
2. (Assignment $1 ; 3(\mathrm{~d})$) Give two positive rational numbers p / q and r / s (this means that p, q, r and s are natural, or counting, numbers). Suppose that $p / q<r / s$. Order the above three numbers.

1. $\frac{(p / q)+(r / s)}{2}$
2. $\sqrt{(p r) /(q s)}$
3. $(p+r) /(q+s)$

Solution: Putting $a=p / q$ and $b=r / s$, we have $(a-b)^{2} \geq 0$. This gives $a^{2}+b^{2} \geq$ $2 a b$. Adding $2 a b$ to both sides, we have $(a+b)^{2} \geq 4 a b$. Diving by 2 and taking (positive) square root, we get

$$
\frac{a+b}{2} \geq \sqrt{a b}
$$

In other words

$$
\frac{(p / q)+(r / s)}{2} \geq \sqrt{(p r) /(q s)}
$$

This means that the first number is not less than the second number.
We note that,

$$
\frac{(1 / 3)+(1 / 2)}{2}=\frac{5}{12}>\frac{2}{5}=\frac{1+1}{3+2}
$$

on the other hand

$$
\frac{(1 / 2)+(2 / 3)}{2}=\frac{7}{12}<\frac{3}{5}=\frac{1+2}{2+3}
$$

Hence, the first and last numbers cannot be compared in general.
Similarly,

$$
\sqrt{(1 / 1) \cdot(1 / 4)}=\frac{1}{2}>\frac{2}{5}=\frac{1+1}{1+4}
$$

On the other hand

$$
\sqrt{(4 / 1) \cdot(1 / 1)}=\frac{2}{1}<\frac{5}{2}=\frac{4+1}{1+1}
$$

Hence the last two numbers cannot be compared in general.
3. (Assignment 1; 4(c)) Given that p and q are counting numbers so that $p^{2}>3 q^{2}$ and put $r / s=(2 p+3 q) /(p+2 q)$. Show that:

- $r^{2}>3 s^{2}$
- $r / s<p / q$

Use this idea to find a rational number a / b so that $100\left(a^{2}-3 b^{2}\right)<b^{2}$.

Solution: We note that $3^{2}>3 \cdot 1^{2}$ so we start with $p_{1} / q_{1}=3 / 1$ and define

$$
\frac{p_{n+1}}{q_{n+1}}=\frac{2 p_{n}+3 q_{n}}{p_{n}+2 q_{n}}
$$

This gives us the sequence

$$
\frac{3}{1}, \frac{9}{5}, \frac{33}{19}, \frac{123}{71}
$$

We check that the last fraction a / b satisfies the condition $100\left(a^{2}-3 b^{2}\right)<b^{2}$.
4. (Assignment 2; $1(\mathrm{e})$) Compare the following sequences to decide which one is eventually larger. The sequence with general term 2^{n}

$$
2^{1}, 2^{2}, 2^{3}, \ldots
$$

versus the Fibonacci sequence with general term $F(n)=F(n-1)+F(n-2)$ starting with $F(1)=5$ and $F(2)=8$.

$$
5,8,13, \ldots
$$

Solution: We note that $F(1)<F(2)$ and claim, by induction, that $F(n)<F(n+1)$ which we already have for $n=1$. Let assume that we have proved that $F(1)<$ $F(2)<\cdots<F(n)<F(n+1)$. Then

$$
F(n+1)=F(n)+F(n-1)<F(n+1)+F(n)=F(n+2)
$$

Hence, we have proved, by induction that $F(n)<F(n+1)$.
Now

$$
F(n)=F(n-1)+F(n-2)<F(n-1)+F(n-1)=2 F(n-1)
$$

So, if we find one k so that $F(k)<2^{k}$, then $F(k+n)<2^{k+n}$ for all $n \geq 0$, which we can prove by induction on n starting with $n=0$.

We check that $F(6)=2 \cdot 8+3 \cdot 13=55$ while $2^{6}=64$. So we have a candidate k.
5. (Assignment 2; 2(e)) Give the properties of the sequence out of:
eventually increasing, eventually decreasing, neither, bounded, unbounded
The sequence with general term $n \cdot \sin (1 / n)$

$$
\sin (1), 2 \sin (1 / 2), 3 \sin (1 / 3), \ldots
$$

Solution: Since the function sin was defined later, this makes use of things not proved about this function at this point in the course! Here is a proof that does not use calculus.

The function \sin is defined by the series

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

which converges uniformly and absolutely in $|x| \leq r$ for all r. It follows that

$$
\frac{\sin (x)}{x}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k+1)!}
$$

For $x=1 / n$ we get an alternating series $\sum_{k=0}^{\infty}(-1)^{k} a_{k, n}$ with

$$
a_{k, n}=\frac{1}{n^{2 k}(2 k+1)!}
$$

Since the series is alternating, it follows that $n \sin (1 / n)$ lies between

$$
p_{n}=\left(1-\frac{1}{n^{2} 3!}\right) \text { and } q_{n}=\left(1-\frac{1}{n^{2} 3!}+\frac{1}{n^{4} 5!}\right)
$$

Now,

$$
p_{n+1}-p_{n}=\frac{1}{3!}\left(\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right)=\frac{2 n+1}{n^{2}(n+1)^{2} 3!}
$$

For large n, it follows that

$$
p_{n+1}-p_{n}>q_{n}-p_{n}=\frac{1}{n^{4} 5!}
$$

In other words, for large n the ordering is

$$
1>q_{n+1}>p_{n+1}>q_{n}>p_{n}
$$

It follows that $(n+1) \sin (1 /(n+1))>n \sin (1 / n)$ is an increasing sequence.
The argument using calculus is a bit simpler. We prove that (using the power series) $f(x)=\sin (x) / x$ is twice continuously differentiable at $x=0$.

1. Its derivative $f^{\prime}(x)$ takes the value 0 at $x=0$.
2. Its second derivative $f^{\prime \prime}(0)$ is $-1 / 6$.

From these three properties, we show that $f^{\prime}(x)$ is negative for positive values of x near 0 . From this it follows that $\sin (x) / x$ decreases with increasing x near $x=0$. Thus $n \sin (1 / n)$ is increasing with increasing n.
6. (Assignment 2; 3(c)) Does the following sequence have an upper bound? The sequence with general term $1+1 / 2+\cdots+1 / n$! where $n!=1 \cdot 2 \cdots n$ is the factorial of n.

Solution: It has been shown in the notes that this is bounded above.
7. (Assignment $3 ; 1(\mathrm{~g})$) Does the following series converge or does it diverge to infinity? The series $\sum_{n=1}^{\infty} n \cdot x^{n}$ for $0<x<1$.

Solution: This too has been shown in one of the assignments. The key point is that the condition $0<x<1$ must be used to ensure that the sum of the infinite geometric series makes sense.
8. (Assignment $4 ; 1(\mathrm{f})$ and $1(\mathrm{~g})$) Find the limit superior and the limit inferior of the following sequences.
(1 (bonus))
(1 (bonus))
(a) For each n, let k_{n} be such that $2^{k_{n}}$ is the smallest power of 2 which is greater than n; in other words $2^{k_{n}-1} \leq n<2^{k_{n}}$. Now take the sequence $\left(n / 2^{k_{n}}\right)_{n \geq 1}$.

Solution: For $k \geq 1$, if $n=p_{k}=2^{k}-1$, then it is clear from the definition that $k_{n}=k$. Moreover, $p_{r}>p$ (prove it by induction!). Thus

$$
\sup \left(\frac{n}{2^{k_{n}}}\right)_{n \geq r} \geq \sup \left(1-\frac{1}{2^{k}}\right)_{k \geq r}=1
$$

On the other hand it is clear that $n / 2^{k_{n}}<1$. This proves that

$$
\sup \left(\frac{n}{2^{k_{n}}}\right)_{n \geq r}=1
$$

for all r. Hence $\lim \sup \left(n / 2^{k_{n}}\right)=1$.
For $k \geq 1$, if $n=q_{k}=2^{k-1}$, then it is clear from the definition that $k_{n}=k$. Again, $q_{r+1}>r$ (prove it by induction). Thus

$$
\inf \left(\frac{n}{2^{k_{n}}}\right)_{n \geq r} \leq \inf \left(\frac{2^{k-1}}{2^{k}}\right)_{k \geq r+1}=\frac{1}{2}
$$

On the other hand it is clear that $1 / 2 \leq n / 2^{k_{n}}$ for all n. This proves that

$$
\inf \left(\frac{n}{2^{k_{n}}}\right)_{n \geq r}=1 / 2
$$

for all r. Hence $\lim \inf \left(n / 2^{k_{n}}\right)=1 / 2$.
(b) $(\sin (n))_{n \geq 1}$.

Solution: This is a more subtle result than what has been proved during this course.
To explain this, we first need some notation. Given any positive number x, by the Archimedean principle, there is a non-negative integer n so that $x<n+1$. Let $[x]$ denote the smallest such integer, called the "integer part" of x. Then, we have $[x] \leq x<[x]+1$. We further denote by $\{x\}=x-[x]$ and call it the "fractional part" of x. Note that we have

$$
x=[x]+\{x\}=\text { integer part of } x+\text { fraction part of } x
$$

for any number x.
We need two statements, one of which is very difficult to prove:

1. Let α be an irrational number. Given any number r in $[0,1]$, there is a sequence $n_{1}<n_{2}<\cdots$ of positive integers such that $\left(\left\{n_{k} \alpha\right\}\right)_{k \geq 1}$ converges to r.
2. The number π is irrational.

Assuming these results, and the properties of $\sin (x)$ proved in the notes, we can proceed as follows.
Take $\alpha=1 /(2 \pi)$ and $r=1 / 4$. By the above statement, we can find an increasing sequence $n_{1}<n_{2}<\cdots$ of positive integers such that the sequence $\left.\left(\left\{n_{k} /(2 \pi)\right]\right\}\right)_{k \geq 1}$ converges to $1 / 4$. Now,

$$
\frac{n_{k}}{2 \pi}=\left[\frac{n_{k}}{2 \pi}\right]+\left\{\frac{n_{k}}{2 \pi}\right\}
$$

Multiplying by 2π we have

$$
n_{k}=(2 \pi)\left[\frac{n_{k}}{2 \pi}\right]+(2 \pi)\left\{\frac{n_{k}}{2 \pi}\right\}
$$

By the properties of sin proved in the notes we then obtain

$$
\sin \left(n_{k}\right)=\sin \left((2 \pi)\left\{\frac{n_{k}}{2 \pi}\right\}\right)
$$

By the properties of sequences proved in the notes

$$
\lim \left((2 \pi)\left\{\frac{n_{k}}{2 \pi}\right\}\right)_{k \geq 1}=(2 \pi) \lim \left(\left\{\frac{n_{k}}{2 \pi}\right\}\right)_{k \geq 1}
$$

By assumption the second limit is $(2 \pi)(1 / 4)=\pi / 2$. By the continuity of sin we get

$$
\lim \left(\sin \left(n_{k}\right)_{k \geq 1}\right)=\sin \left((2 \pi) \lim \left(\left\{\frac{n_{k}}{2 \pi}\right\}\right)_{k \geq 1}\right)=\sin (\pi / 2)
$$

In the notes we have proved that $\sin (\pi / 2)=1$. Thus, we have proved that $\lim \left(\sin \left(n_{k}\right)\right)_{k \geq 1}=1$. As proved in the notes $|\sin (x)| \leq 1$ for all x. It follows easily that $\lim \sup (\sin (n))_{n \geq 1}=1$.
Choosing $r=3 / 4$ instead of $1 / 4$ in the above argument we can also find a increasing sequence $\left(m_{k}\right)_{k \geq 1}$ of positive integers so that $\lim \left(\sin \left(m_{k}\right)\right)_{k \geq 1}=$ $\sin (3 \pi / 4)=-1$. This then gives $\lim \inf (\sin (n))_{n \geq 1}=-1$.
We will not attempt to prove that π is irrational. This is a theorem somewhat beyond what can be easily achieved in these notes. The other statement assumed above can be proved and is left as an interesting (not easy!) exercise.
9. (Assignment 9; 1(c)) The following question is about continuous functions on an interval
$[a, b]$.
Find an example of non-zero functions f and g on $[0,1]$ such that $f \cdot g=0$.

Solution: We define

$$
f(x)= \begin{cases}x-1 / 2 & x \leq 1 / 2 \\ 0 & x \geq 1 / 2\end{cases}
$$

and

$$
g(x)= \begin{cases}x-1 / 2 & x \geq 1 / 2 \\ 0 & x \leq 1 / 2\end{cases}
$$

It is clear that $f(x) g(x)=0$ for all x lying in $[0,1]$. Moreover, f and g are non-zero. It is clear that f and g are continuous on $[0,1 / 2)$ and ($1 / 2,1]$. It remains to check that they are contiuous at 0 and that is easily done.

