
Analysis in One Variable
MTH102 All Assignments Solutions to Bonus Questions

headandfoot

Solutions to Assignment 1,2,3,4,9

1. (Assignment 1; 2(c)) In the pair of numbers below, which is larger? Explain why. n5,
10000 · (n+ 1)2 for large n.

Solution: Assignment 1 was only supposed to use basic arithmetic properties of
numbers.

We note the high-school expansion gives, for n ≥ 1,

(n+ 1)2 = n2 + 2n+ 1 ≤ n2 + 2n2 + n2 ≤ 5n2

Thus, 50000 · n2 > 10000 · (n+ 1)2.

It is clear that for n > 50000, we have n3 > 50000 · n2. Since n5 ≥ n3 for n ≥ 1, we
see that n5 > 10000 · (n+ 1)2 for n > 50000.

2. (Assignment 1; 3(d)) Give two positive rational numbers p/q and r/s (this means that
p, q, r and s are natural, or counting, numbers). Suppose that p/q < r/s. Order the
above three numbers.

1. (p/q)+(r/s)
2

2.
√

(pr)/(qs)

3. (p+ r)/(q + s)

Solution: Putting a = p/q and b = r/s, we have (a− b)2 ≥ 0. This gives a2 + b2 ≥
2ab. Adding 2ab to both sides, we have (a + b)2 ≥ 4ab. Diving by 2 and taking
(positive) square root, we get

a+ b

2
≥
√
ab

In other words
(p/q) + (r/s)

2
≥
√

(pr)/(qs)

This means that the first number is not less than the second number.

We note that,
(1/3) + (1/2)

2
=

5

12
>

2

5
=

1 + 1

3 + 2

on the other hand
(1/2) + (2/3)

2
=

7

12
<

3

5
=

1 + 2

2 + 3
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Hence, the first and last numbers cannot be compared in general.

Similarly, √
(1/1) · (1/4) =

1

2
>

2

5
=

1 + 1

1 + 4

On the other hand √
(4/1) · (1/1) =

2

1
<

5

2
=

4 + 1

1 + 1

Hence the last two numbers cannot be compared in general.

3. (Assignment 1; 4(c)) Given that p and q are counting numbers so that p2 > 3q2 and put
r/s = (2p+ 3q)/(p+ 2q). Show that:

• r2 > 3s2

• r/s < p/q

Use this idea to find a rational number a/b so that 100(a2 − 3b2) < b2.

Solution: We note that 32 > 3 · 12 so we start with p1/q1 = 3/1 and define

pn+1

qn+1

=
2pn + 3qn
pn + 2qn

This gives us the sequence
3

1
,
9

5
,
33

19
,
123

71

We check that the last fraction a/b satisfies the condition 100(a2 − 3b2) < b2.

4. (Assignment 2; 1(e)) Compare the following sequences to decide which one is eventually
larger. The sequence with general term 2n

21, 22, 23, . . .

versus the Fibonacci sequence with general term F (n) = F (n − 1) + F (n − 2) starting
with F (1) = 5 and F (2) = 8.

5, 8, 13, . . .
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Solution: We note that F (1) < F (2) and claim, by induction, that F (n) < F (n+1)
which we already have for n = 1. Let assume that we have proved that F (1) <
F (2) < · · · < F (n) < F (n+ 1). Then

F (n+ 1) = F (n) + F (n− 1) < F (n+ 1) + F (n) = F (n+ 2)

Hence, we have proved, by induction that F (n) < F (n+ 1).

Now
F (n) = F (n− 1) + F (n− 2) < F (n− 1) + F (n− 1) = 2F (n− 1)

So, if we find one k so that F (k) < 2k, then F (k + n) < 2k+n for all n ≥ 0, which
we can prove by induction on n starting with n = 0.

We check that F (6) = 2 · 8 + 3 · 13 = 55 while 26 = 64. So we have a candidate k.

5. (Assignment 2; 2(e)) Give the properties of the sequence out of:

eventually increasing, eventually decreasing, neither, bounded, unbounded

The sequence with general term n · sin(1/n)

sin(1), 2 sin(1/2), 3 sin(1/3), . . .

Solution: Since the function sin was defined later, this makes use of things not
proved about this function at this point in the course! Here is a proof that does not
use calculus.

The function sin is defined by the series

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

which converges uniformly and absolutely in |x| ≤ r for all r. It follows that

sin(x)

x
=
∞∑
k=0

(−1)k
x2k

(2k + 1)!

For x = 1/n we get an alternating series
∑∞

k=0(−1)kak,n with

ak,n =
1

n2k(2k + 1)!
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Since the series is alternating, it follows that n sin(1/n) lies between

pn =

(
1− 1

n23!

)
and qn =

(
1− 1

n23!
+

1

n45!

)
Now,

pn+1 − pn =
1

3!

(
1

n2
− 1

(n+ 1)2

)
=

2n+ 1

n2(n+ 1)23!

For large n, it follows that

pn+1 − pn > qn − pn =
1

n45!

In other words, for large n the ordering is

1 > qn+1 > pn+1 > qn > pn

It follows that (n+ 1) sin(1/(n+ 1)) > n sin(1/n) is an increasing sequence.

The argument using calculus is a bit simpler. We prove that (using the power series)
f(x) = sin(x)/x is twice continuously differentiable at x = 0.

1. Its derivative f ′(x) takes the value 0 at x = 0.

2. Its second derivative f ′′(0) is −1/6.

From these three properties, we show that f ′(x) is negative for positive values of x
near 0. From this it follows that sin(x)/x decreases with increasing x near x = 0.
Thus n sin(1/n) is increasing with increasing n.

6. (Assignment 2; 3(c)) Does the following sequence have an upper bound? The sequence
with general term 1 + 1/2 + · · ·+ 1/n! where n! = 1 · 2 · · ·n is the factorial of n.

Solution: It has been shown in the notes that this is bounded above.

7. (Assignment 3; 1(g)) Does the following series converge or does it diverge to infinity?
The series

∑∞
n=1 n · xn for 0 < x < 1.

Solution: This too has been shown in one of the assignments. The key point is
that the condition 0 < x < 1 must be used to ensure that the sum of the infinite
geometric series makes sense.
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8. (Assignment 4; 1(f) and 1(g)) Find the limit superior and the limit inferior of the fol-
lowing sequences.

(a)(1 (bonus)) For each n, let kn be such that 2kn is the smallest power of 2 which is greater than
n; in other words 2kn−1 ≤ n < 2kn . Now take the sequence (n/2kn)n≥1.

Solution: For k ≥ 1, if n = pk = 2k − 1, then it is clear from the definition
that kn = k. Moreover, pr > p (prove it by induction!). Thus

sup
( n

2kn

)
n≥r
≥ sup

(
1− 1

2k

)
k≥r

= 1

On the other hand it is clear that n/2kn < 1. This proves that

sup
( n

2kn

)
n≥r

= 1

for all r. Hence lim sup(n/2kn) = 1.

For k ≥ 1, if n = qk = 2k−1, then it is clear from the definition that kn = k.
Again, qr+1 > r (prove it by induction). Thus

inf
( n

2kn

)
n≥r
≤ inf

(
2k−1

2k

)
k≥r+1

=
1

2

On the other hand it is clear that 1/2 ≤ n/2kn for all n. This proves that

inf
( n

2kn

)
n≥r

= 1/2

for all r. Hence lim inf(n/2kn) = 1/2.

(b)(1 (bonus)) (sin(n))n≥1.

Solution: This is a more subtle result than what has been proved during this
course.

To explain this, we first need some notation. Given any positive number x, by
the Archimedean principle, there is a non-negative integer n so that x < n+ 1.
Let [x] denote the smallest such integer, called the “integer part” of x. Then,
we have [x] ≤ x < [x] + 1. We further denote by {x} = x − [x] and call it the
“fractional part” of x. Note that we have

x = [x] + {x} = integer part of x + fraction part of x

for any number x.

We need two statements, one of which is very difficult to prove:
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1. Let α be an irrational number. Given any number r in [0, 1], there is a
sequence n1 < n2 < · · · of positive integers such that ({nkα})k≥1 converges
to r.

2. The number π is irrational.

Assuming these results, and the properties of sin(x) proved in the notes, we can
proceed as follows.

Take α = 1/(2π) and r = 1/4. By the above statement, we can find an in-
creasing sequence n1 < n2 < · · · of positive integers such that the sequence
({nk/(2π)]})k≥1 converges to 1/4. Now,

nk

2π
=
[nk

2π

]
+
{nk

2π

}
Multiplying by 2π we have

nk = (2π)
[nk

2π

]
+ (2π)

{nk

2π

}
By the properties of sin proved in the notes we then obtain

sin(nk) = sin
(

(2π)
{nk

2π

})
By the properties of sequences proved in the notes

lim
(

(2π)
{nk

2π

})
k≥1

= (2π) lim
({nk

2π

})
k≥1

By assumption the second limit is (2π)(1/4) = π/2. By the continuity of sin we
get

lim(sin(nk)k≥1) = sin

(
(2π) lim

({nk

2π

})
k≥1

)
= sin(π/2)

In the notes we have proved that sin(π/2) = 1. Thus, we have proved that
lim(sin(nk))k≥1 = 1. As proved in the notes |sin(x)| ≤ 1 for all x. It follows
easily that lim sup(sin(n))n≥1 = 1.

Choosing r = 3/4 instead of 1/4 in the above argument we can also find
a increasing sequence (mk)k≥1 of positive integers so that lim(sin(mk))k≥1 =
sin(3π/4) = −1. This then gives lim inf(sin(n))n≥1 = −1.

We will not attempt to prove that π is irrational. This is a theorem somewhat
beyond what can be easily achieved in these notes. The other statement assumed
above can be proved and is left as an interesting (not easy!) exercise.

9. (Assignment 9; 1(c)) The following question is about continuous functions on an interval
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[a, b].

Find an example of non-zero functions f and g on [0, 1] such that f · g = 0.

Solution: We define

f(x) =

{
x− 1/2 x ≤ 1/2

0 x ≥ 1/2

and

g(x) =

{
x− 1/2 x ≥ 1/2

0 x ≤ 1/2

It is clear that f(x)g(x) = 0 for all x lying in [0, 1]. Moreover, f and g are non-zero.
It is clear that f and g are continuous on [0, 1/2) and (1/2, 1]. It remains to check
that they are contiuous at 0 and that is easily done.
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