Analysis in One Variable MTH102

All Assignments

head and foot

Solutions to Assignment 1,2,3,4,9

1. (Assignment 1; 2(c)) In the pair of numbers below, which is larger? Explain why. n^5 , $10000 \cdot (n+1)^2$ for large n.

Solution: Assignment 1 was only supposed to use basic arithmetic properties of numbers.

We note the high-school expansion gives, for $n \ge 1$,

$$(n+1)^2 = n^2 + 2n + 1 \le n^2 + 2n^2 + n^2 \le 5n^2$$

Thus, $50000 \cdot n^2 > 10000 \cdot (n+1)^2$.

It is clear that for n > 50000, we have $n^3 > 50000 \cdot n^2$. Since $n^5 \ge n^3$ for $n \ge 1$, we see that $n^5 > 10000 \cdot (n+1)^2$ for n > 50000.

- 2. (Assignment 1; 3(d)) Give two positive rational numbers p/q and r/s (this means that p, q, r and s are natural, or counting, numbers). Suppose that p/q < r/s. Order the above three numbers.
 - 1. $\frac{(p/q) + (r/s)}{2}$

2.
$$\sqrt{(pr)/(qs)}$$

3.
$$(p+r)/(q+s)$$

Solution: Putting a = p/q and b = r/s, we have $(a - b)^2 \ge 0$. This gives $a^2 + b^2 \ge 2ab$. Adding 2ab to both sides, we have $(a + b)^2 \ge 4ab$. Diving by 2 and taking (positive) square root, we get

$$\frac{a+b}{2} \ge \sqrt{ab}$$

In other words

$$\frac{(p/q) + (r/s)}{2} \ge \sqrt{(pr)/(qs)}$$

This means that the first number is not less than the second number. We note that,

on the other hand	$\frac{(1/3) + (1/2)}{2} =$	$=\frac{5}{12}>$	$\frac{2}{5} =$	$=\frac{1+1}{3+2}$
	$\frac{(1/2) + (2/3)}{2} =$	= $rac{7}{12} <$	$\frac{3}{5} =$	$=\frac{1+2}{2+3}$

Hence, the first and last numbers cannot be compared in general. Similarly,

$$\sqrt{(1/1) \cdot (1/4)} = \frac{1}{2} > \frac{2}{5} = \frac{1+1}{1+4}$$

On the other hand

$$\sqrt{(4/1)\cdot(1/1)} = \frac{2}{1} < \frac{5}{2} = \frac{4+1}{1+1}$$

Hence the last two numbers cannot be compared in general.

- 3. (Assignment 1; 4(c)) Given that p and q are counting numbers so that $p^2 > 3q^2$ and put r/s = (2p + 3q)/(p + 2q). Show that:
 - $r^2 > 3s^2$

•
$$r/s < p/q$$

Use this idea to find a rational number a/b so that $100(a^2 - 3b^2) < b^2$.

Solution: We note that $3^2 > 3 \cdot 1^2$ so we start with $p_1/q_1 = 3/1$ and define $\frac{p_{n+1}}{q_{n+1}} = \frac{2p_n + 3q_n}{p_n + 2q_n}$ This gives us the sequence $\frac{3}{1}, \frac{9}{5}, \frac{33}{19}, \frac{123}{71}$ We check that the last fraction a/b satisfies the condition $100(a^2 - 3b^2) < b^2$.

4. (Assignment 2; 1(e)) Compare the following sequences to decide which one is *eventually* larger. The sequence with general term 2^n

$$2^1, 2^2, 2^3, \ldots$$

versus the Fibonacci sequence with general term F(n) = F(n-1) + F(n-2) starting with F(1) = 5 and F(2) = 8.

 $5, 8, 13, \ldots$

Solution: We note that F(1) < F(2) and claim, by induction, that F(n) < F(n+1) which we already have for n = 1. Let assume that we have proved that $F(1) < F(2) < \cdots < F(n) < F(n+1)$. Then

$$F(n+1) = F(n) + F(n-1) < F(n+1) + F(n) = F(n+2)$$

Hence, we have proved, by induction that F(n) < F(n+1).

Now

$$F(n) = F(n-1) + F(n-2) < F(n-1) + F(n-1) = 2F(n-1)$$

So, if we find one k so that $F(k) < 2^k$, then $F(k+n) < 2^{k+n}$ for all $n \ge 0$, which we can prove by induction on n starting with n = 0.

We check that $F(6) = 2 \cdot 8 + 3 \cdot 13 = 55$ while $2^6 = 64$. So we have a candidate k.

5. (Assignment 2; 2(e)) Give the properties of the sequence out of:

eventually increasing, eventually decreasing, neither, bounded, unbounded

The sequence with general term $n \cdot \sin(1/n)$

$$\sin(1), 2\sin(1/2), 3\sin(1/3), \ldots$$

Solution: Since the function sin was defined later, this makes use of things not proved about this function at this point in the course! Here is a proof that does not use calculus.

The function sin is defined by the series

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

which converges uniformly and absolutely in $|x| \leq r$ for all r. It follows that

$$\frac{\sin(x)}{x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k+1)!}$$

For x = 1/n we get an alternating series $\sum_{k=0}^{\infty} (-1)^k a_{k,n}$ with

$$a_{k,n} = \frac{1}{n^{2k}(2k+1)!}$$

Since the series is alternating, it follows that $n\sin(1/n)$ lies between

$$p_n = \left(1 - \frac{1}{n^2 3!}\right)$$
 and $q_n = \left(1 - \frac{1}{n^2 3!} + \frac{1}{n^4 5!}\right)$

Now,

$$p_{n+1} - p_n = \frac{1}{3!} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) = \frac{2n+1}{n^2(n+1)^2 3!}$$

For large n, it follows that

$$p_{n+1} - p_n > q_n - p_n = \frac{1}{n^4 5!}$$

In other words, for large n the ordering is

$$1 > q_{n+1} > p_{n+1} > q_n > p_n$$

It follows that $(n+1)\sin(1/(n+1)) > n\sin(1/n)$ is an increasing sequence.

The argument using calculus is a bit simpler. We prove that (using the power series) $f(x) = \sin(x)/x$ is twice continuously differentiable at x = 0.

- 1. Its derivative f'(x) takes the value 0 at x = 0.
- 2. Its second derivative f''(0) is -1/6.

From these three properties, we show that f'(x) is negative for positive values of x near 0. From this it follows that $\sin(x)/x$ decreases with increasing x near x = 0. Thus $n \sin(1/n)$ is increasing with increasing n.

6. (Assignment 2; 3(c)) Does the following sequence have an *upper* bound? The sequence with general term $1 + 1/2 + \cdots + 1/n!$ where $n! = 1 \cdot 2 \cdots n$ is the factorial of n.

Solution: It has been shown in the notes that this is bounded above.

7. (Assignment 3; 1(g)) Does the following series converge or does it diverge to infinity? The series $\sum_{n=1}^{\infty} n \cdot x^n$ for 0 < x < 1.

Solution: This too has been shown in one of the assignments. The key point is that the condition 0 < x < 1 must be used to ensure that the sum of the infinite geometric series makes sense.

- 8. (Assignment 4; 1(f) and 1(g)) Find the limit superior and the limit inferior of the following sequences.
- (1 (bonus))

(a) For each n, let k_n be such that 2^{k_n} is the *smallest* power of 2 which is greater than n; in other words $2^{k_n-1} \le n < 2^{k_n}$. Now take the sequence $(n/2^{k_n})_{n\ge 1}$.

Solution: For $k \ge 1$, if $n = p_k = 2^k - 1$, then it is clear from the definition that $k_n = k$. Moreover, $p_r > p$ (prove it by induction!). Thus

$$\sup\left(\frac{n}{2^{k_n}}\right)_{n\geq r}\geq \sup\left(1-\frac{1}{2^k}\right)_{k\geq r}=1$$

On the other hand it is clear that $n/2^{k_n} < 1$. This proves that

$$\sup\left(\frac{n}{2^{k_n}}\right)_{n\ge r}=1$$

for all r. Hence $\limsup(n/2^{k_n}) = 1$.

For $k \ge 1$, if $n = q_k = 2^{k-1}$, then it is clear from the definition that $k_n = k$. Again, $q_{r+1} > r$ (prove it by induction). Thus

$$\inf\left(\frac{n}{2^{k_n}}\right)_{n\geq r} \leq \inf\left(\frac{2^{k-1}}{2^k}\right)_{k\geq r+1} = \frac{1}{2}$$

On the other hand it is clear that $1/2 \leq n/2^{k_n}$ for all n. This proves that

$$\inf\left(\frac{n}{2^{k_n}}\right)_{n\ge r} = 1/2$$

for all r. Hence $\liminf(n/2^{k_n}) = 1/2$.

(1 (bonus)) (b) $(\sin(n))_{n \ge 1}$.

Solution: This is a more subtle result than what has been proved during this course.

To explain this, we first need some notation. Given any positive number x, by the Archimedean principle, there is a non-negative integer n so that x < n + 1. Let [x] denote the smallest such integer, called the "integer part" of x. Then, we have $[x] \le x < [x] + 1$. We further denote by $\{x\} = x - [x]$ and call it the "fractional part" of x. Note that we have

 $x = [x] + \{x\}$ = integer part of x + fraction part of x

for any number x.

We need two statements, one of which is *very* difficult to prove:

- 1. Let α be an irrational number. Given any number r in [0, 1], there is a sequence $n_1 < n_2 < \cdots$ of positive integers such that $(\{n_k \alpha\})_{k \ge 1}$ converges to r.
- 2. The number π is irrational.

Assuming these results, and the properties of sin(x) proved in the notes, we can proceed as follows.

Take $\alpha = 1/(2\pi)$ and r = 1/4. By the above statement, we can find an increasing sequence $n_1 < n_2 < \cdots$ of positive integers such that the sequence $(\{n_k/(2\pi)\}\}_{k\geq 1}$ converges to 1/4. Now,

$$\frac{n_k}{2\pi} = \left[\frac{n_k}{2\pi}\right] + \left\{\frac{n_k}{2\pi}\right\}$$

Multiplying by 2π we have

$$n_k = (2\pi) \left[\frac{n_k}{2\pi} \right] + (2\pi) \left\{ \frac{n_k}{2\pi} \right\}$$

By the properties of sin proved in the notes we then obtain

$$\sin(n_k) = \sin\left((2\pi)\left\{\frac{n_k}{2\pi}\right\}\right)$$

By the properties of sequences proved in the notes

$$\lim\left((2\pi)\left\{\frac{n_k}{2\pi}\right\}\right)_{k\geq 1} = (2\pi)\lim\left(\left\{\frac{n_k}{2\pi}\right\}\right)_{k\geq 1}$$

By assumption the second limit is $(2\pi)(1/4) = \pi/2$. By the continuity of sin we get

$$\lim(\sin(n_k)_{k\geq 1}) = \sin\left((2\pi)\lim\left(\left\{\frac{n_k}{2\pi}\right\}\right)_{k\geq 1}\right) = \sin(\pi/2)$$

In the notes we have proved that $\sin(\pi/2) = 1$. Thus, we have proved that $\lim(\sin(n_k))_{k\geq 1} = 1$. As proved in the notes $|\sin(x)| \leq 1$ for all x. It follows easily that $\limsup(\sin(n))_{n\geq 1} = 1$.

Choosing r = 3/4 instead of 1/4 in the above argument we can also find a increasing sequence $(m_k)_{k\geq 1}$ of positive integers so that $\lim(\sin(m_k))_{k\geq 1} = \sin(3\pi/4) = -1$. This then gives $\liminf(\sin(n))_{n\geq 1} = -1$.

We will not attempt to prove that π is irrational. This is a theorem somewhat beyond what can be easily achieved in these notes. The other statement assumed above *can* be proved and is left as an interesting (not easy!) exercise.

9. (Assignment 9; 1(c)) The following question is about continuous functions on an interval

[a,b].

Find an example of non-zero functions f and g on [0, 1] such that $f \cdot g = 0$.

Solution: We define

$$f(x) = \begin{cases} x - 1/2 & x \le 1/2 \\ 0 & x \ge 1/2 \end{cases}$$

and

$$g(x) = \begin{cases} x - 1/2 & x \ge 1/2 \\ 0 & x \le 1/2 \end{cases}$$

It is clear that f(x)g(x) = 0 for all x lying in [0, 1]. Moreover, f and g are non-zero. It is clear that f and g are continuous on [0, 1/2) and (1/2, 1]. It remains to check that they are continuous at 0 and that is easily done.