Solutions to Assignment 11

1. Write the Taylor Series with remainder term of the following functions.
(b) $\exp (x) /(1+\exp (x))$ till 4 terms.

Solution: We calculate the derivatives

$$
\begin{aligned}
\frac{d}{d x} \frac{\exp (x)}{1+\exp (x)} & =\frac{\exp (x)}{(1+\exp (x))^{2}} \\
\frac{d}{d x} \frac{\exp (x)}{(1+\exp (x))^{2}} & =\frac{\exp (x)(1-\exp (x))}{(1+\exp (x))^{3}} \\
\frac{d}{d x} \frac{\exp (x)(1-\exp (x))}{(1+\exp (x))^{3}} & =\frac{\exp (x)\left(1-4 \exp (x)+\exp (x)^{2}\right)}{(1+\exp (x))^{4}}
\end{aligned}
$$

Hence the Taylor Series is

$$
\frac{\exp (x)}{1+\exp (x)}=\frac{1}{2}+\frac{1}{4} x+0 x^{2}-\frac{1}{8} \frac{x^{3}}{6}+g x^{3}
$$

where g is $o\left(x^{0}\right)$ at 0 (in other words, g is continuous and vanishes at 0).
Hence the Taylor Series is

$$
\frac{\sin (x)}{\cos (x)}=0+1 \cdot x+0 \cdot \frac{x^{2}}{2}+2 \cdot \frac{x^{3}}{3!}+g x^{3}
$$

where g is $o\left(x^{0}\right)$ at 0 (in other words, g is continuous and vanishes at 0).
(c) $\sin \left(|x|^{3}\right)$ (as many terms as possible).

Solution: We calculate the derivatives

$$
\begin{aligned}
\frac{d}{d x} \sin \left(|x|^{3}\right) & =\cos \left(|x|^{3}\right) \cdot(3 x|x|) \\
\frac{d^{2}}{d x^{2}} \sin \left(|x|^{3}\right) & =-\sin \left(|x|^{3}\right) \cdot(3 x|x|)^{2}+\cos \left(|x|^{3}\right) \cdot(6|x|)
\end{aligned}
$$

No further derivatives are possible since the last function is not differentiable. Hence the Taylor Series is

$$
\sin \left(|x|^{3}\right)=0+0 x+0 \cdot \frac{x^{2}}{2}+g x^{2}
$$

where g is $o\left(x^{0}\right)$ at 0 (in other words, g is continuous and vanishes at 0).
(2 marks) (d) Given continuously differentiable functions f and g such that $f(0)=1, g(0)=0$, $d f / d x=g$ and $d g / d x=f$. Write the Taylor series of f and g and try to recognise them assuming that they are determined by the Taylor series.

Solution: We calculate

$$
\begin{array}{rlr}
\frac{d f}{d x}(0) & =g(0) & =0 \\
\frac{d^{2} f}{d x^{2}}(0) & =f(0) & \\
\frac{d^{3} f}{d x^{3}}(0) & =g(0) & \\
\end{array}
$$

and so on. In other words,

$$
\frac{d^{k} f}{d x^{k}}(0)= \begin{cases}1 & k \text { even } \\ 0 & k \text { odd }\end{cases}
$$

Similarly,

$$
\frac{d^{k} g}{d x^{k}}(0)= \begin{cases}0 & k \text { even } \\ 1 & k \text { odd }\end{cases}
$$

It follows that the Taylor series are

$$
\begin{aligned}
& f(x)=1+\frac{x^{2}}{2}+\cdots+\frac{x^{2 k}}{(2 k)!}+o\left(x^{2 k}\right) \\
& g(x)=x+\frac{x^{3}}{3!}+\cdots+\frac{x^{2 k+1}}{(2 k+1)!}+o\left(x^{2 k+1}\right)
\end{aligned}
$$

These are the series for $\cosh (x)$ and $\sinh (x)$ respectively. Since we are given that f and g are determined by their Taylor series, this gives us f and g as cosh and sinh respectively.
Note that this is not automatic. One needs to prove separately that f and g are given by their Taylor series.
(2 marks) (e) $\sin (x)+\cos (x) \exp \left(-1 / x^{2}\right)$ (where, by convention we treat $\exp \left(-1 / x^{2}\right)$ as 0 at 0$)$.
Solution: Since $\cos (x)$ is bounded for all x, one sees easily that $\cos (x) \exp \left(-1 / x^{2}\right)$ has Taylor series with all terms 0 . It follows that the Taylor series of $\sin (x)+$ $\cos (x) \exp \left(-1 / x^{2}\right)$ is the same as the Taylor series of $\sin (x)$. In particular, the remainder term cannot be made arbitrarily small for any non-zero value of x.

