
Power Series (Continued)
We continue our study of power series

∑∞
k=0 akx

k and some special examples.

We have seen earlier that if, for some positive R, there is a positive constant M
and an integer n so that for all k ≥ n we have

|ak| <
M

Rk

then, the series
∑∞

k=0 akx
k converges uniformly and absolutely for the region

|x| ≤ r for any r such that 0 < r < R.

We note that we have the equivalent inequality |ak|1/k < M1/k

R for k ≥ n. Now,
for any positive constantM we can see that (M1/k)k≥n converges to 1. It follows
that lim sup(|ak|1/k)k≥1 ≤ (1/R).

Conversely, if lim sup(|ak|1/k)k≥1 ≤ 1/S for some positive constant S. Then, for
any R such that 0 < R < S, we have 1/S < 1/R. So, by the definition of limit
superior, there is an n such that |ak|1/k < 1/R for all k ≥ n. It follows that
|ak| < 1/Rk and thus we have uniform and absolute convergence in the region
|x| ≤ r for any r such that 0 < r < R. Since this is true for every R such that
0 < R < S, we see that the power series converges uniformly and absolutely in
the region |x| ≤ r for any r such that 0 < r < S.

For the reasons above, we put lim sup(|ak|1/k)k≥1 = 1/R and call R the “radius
of convergence”. Note that if this limit superior is ∞ (which it can be) then
R = 0. In all other cases 1/R <∞, so that R > 0. In that case the power series
converges uniformly and absolutely in the region |x| ≤ r where r is such that
0 < r < R. Warning: Note that the series does not in general converge for
|x| = R.

Error estimates
Even when the power series converges absolutely and uniformly in some region
like |x| ≤ r, it is not always easy to calculate the sum. However, this does mean
that the series

∑∞
k=0|ak|rk converges. As the latter is a series of non-negative

terms, the sequence of partial sums is increasing (actually it is non-decreasing
as some terms of the series may be 0) to its limit. Hence, given any positive
integer p, there is a positive integer q such that the

∑∞
k=q+1|ak|rk < 1/p. Now,

for |x| ≤ r we get ∣∣∣∣∣
∞∑

k=0
akx

k −
q∑

k=0
akx

k

∣∣∣∣∣ ≤
∞∑

k=q+1
|ak|rk < 1/p

Thus, given any positive integer p, we can choose a positive integer q so that the
sum

∑q
k=0 akx

k is at most 1/p away from the actual value of the power series.

Warning: We cannot decide in advance to take only a fixed number of terms.
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Warning: It is not enough to stop at the point q when |aq+1x
q+1| is small

enough. The error term is the sum of this term and all the remaining terms.

Products of power series
Give power series

∑∞
k=0 akx

k and
∑∞

k=0 bkx
k which converge uniformly and

absolutely in the region |x| ≤ r for some positive r. We want to write a power
series expression for the product. First of all, we note that formally (without
worrying about convergence)( ∞∑

k=0
akx

k

)
·

( ∞∑
m=0

bmx
m

)
=
( ∞∑

n=0
cnx

n

)
where, by equating coefficients, we obtain

cn =
n∑

k=0
akbn−k

Let A =
∑∞

k=0|ak|rk and B =
∑∞

k=0|bk|rk. Given a positive integer p. By the
convergence of the given power series we can find positive integers u and v so
that ∑

k=u+1
|ak|rk < 1/(3pB) and

∑
k=w+1

|bk|rk < 1/(3pA)

We take w ≥ 2 max{u, v}, then if k +m > w, either k > u or m > v. Hence, we
see that∣∣∣∣∣

∞∑
k=w+1

ckx
k

∣∣∣∣∣ ≤
∣∣∣∣∣

u∑
k=0

akx
k

∣∣∣∣∣ ·
∣∣∣∣∣
∞∑

m=v+1
bmx

m

∣∣∣∣∣+

∣∣∣∣∣
∞∑

k=u+1
akx

k

∣∣∣∣∣ ·
∣∣∣∣∣

v∑
m=0

bmx
m

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

k=u+1
akx

k

∣∣∣∣∣ ·
∣∣∣∣∣
∞∑

m=v+1
bmx

m

∣∣∣∣∣
Now, we have the inequalities∣∣∣∣∣

u∑
k=0

akx
k

∣∣∣∣∣ ·
∣∣∣∣∣
∞∑

m=v+1
bmx

m

∣∣∣∣∣ ≤
u∑

k=0

∣∣akx
k
∣∣ · ∞∑

m=v+1
|bmx

m| ≤ A 1
3pA∣∣∣∣∣

∞∑
k=u+1

akx
k

∣∣∣∣∣ ·
∣∣∣∣∣

v∑
m=0

bmx
m

∣∣∣∣∣ ≤
∞∑

k=u+1

∣∣akx
k
∣∣ · v∑

m=0
|bmx

m| ≤ 1
3pBB∣∣∣∣∣

∞∑
k=u+1

akx
k

∣∣∣∣∣ ·
∣∣∣∣∣
∞∑

m=v+1
bmx

m

∣∣∣∣∣ ≤
∞∑

k=u+1

∣∣akx
k
∣∣ · ∞∑

m=v+1
|bmx

m| ≤ 1
3pB

1
3pA

We conclude ∣∣∣∣∣
∞∑

k=w+1
|ck|rk

∣∣∣∣∣ ≤ 1/p

It follows that the above formal product converges uniformly and absolutely and
that it converges to the product of the series.
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Examples
We now apply the above calculations to work out some important examples of
such products.

Addition law for exp

We have seen that the power series
∑∞

k=0 x
k/k! converges absolutely and uni-

formly in |x| ≤ r for every positive r. Putting x = at for some constant a, we
see that the power series

∑∞
k=0(ak/k!)tk converges absolutely and uniformly

in |t| ≤ r for every positive r. Similarly, for some constant b, the power series∑∞
k=0(bk/k!)tk converges absolutely and uniformly in |t| ≤ r for every positive

r. We now calculate the product of these series.( ∞∑
k=0

ak

k! t
k

)
·

( ∞∑
m=0

bm

m! t
m

)
=
∞∑

n=0
cnt

n

As seen above, we have

cn =
n∑

k=0

ak

k! ·
bn−k

(n− k)!

The Binomial theorem gives us
n∑

k=0
n! · a

k

k! ·
bn−k

(n− k)! = (a+ b)n

It follows that cn = (a+ b)n/(n!). Using the standard notation exp(x) for the
sum of the power series

∑∞
k=0 x

k/k!, the above identity becomes

exp(at) · exp(bt) = exp((a+ b)t)

Putting t = 1 we obtain exp(a) exp(b) = exp(a+ b). In other words, exp turns
addition into multiplication.

The power series expression for exp(x) =
∑∞

k=0 x
k/k! is a sum of positive terms

when x > 0. Hence, it follows that exp(x) > 0 for x > 0. Now, using the identity
exp(x) exp(−x) = 1, it follows that exp(−x) > 0 for x > 0. This is not obvious
from the power series! Since exp(0) = 1, we see that exp(x) > 0 for all real
numbers x. In other words,

exp : R→ R>0

By what has been said above this is a group homomorphism from the additive
group of real numbers to the multiplicative group of positive real numbers.
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Addition Law for Sine and Cosine

Recall the power series

sin(x) =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!

cos(x) =
∞∑

k=0
(−1)k x2k

(2k)!

As above, we will calculate the product sin(at) cos(bt) as a power series in t.
Since sin(at) has only odd powers of t and cos(bt) has only even powers of t, the
product is a power series of the form

∑∞
n=0 cnt

2n+1. As above the coefficient cn

is given by

cn =
n∑

k=0

(
(−1)k a2k+1

(2k + 1)!

)
·
(

(−1)n−k b2(n−k)

(2(n− k))!

)
As before, we note the Binomial theorem

n∑
k=0

(2n+1)!
((

a2k+1

(2k + 1)!

)
·
(

b2(n−k)

(2(n− k))!

)
+
(
a2k

(2k)!

)
·
(

b2(n−k)+1

(2(n− k) + 1)!

))
= (a+b)2n+1

We note that (−1)k ·(−1)n−k = (−1)n and that we have only half the terms of the
above Binomial expansion! To complete it we need cos(at) sin(bt). In other words,
we see that if

∑
n=0 dnt

2n+1 is the power series of sin(at) cos(bt) + cos(at) sin(bt),
then

dn = (−1)n
n∑

k=0

((
a2k+1

(2k + 1)!

)
·
(

b2(n−k)

(2(n− k))!

)
+
(
a2k

(2k)!

)
·
(

b2(n−k)+1

(2(n− k) + 1)!

))
= (−1)n· (a+ b)2n+1

(2n+ 1)!

Comparing this with the power series for sin((a+ b)t) we get the identity

sin(at) cos(bt) + cos(at) sin(bt) = sin((a+ b)t)

By putting t = 1 we get the addition law for Sine

sin(a) cos(b) + cos(a) sin(b) = sin(a+ b)

A similar calculation leads us to the identity

cos(a) cos(b)− sin(a) sin(b) = cos(a+ b)

In particular, by taking b = −a, and using sin(−a) = − sin(a) (since the series
has only odd powers), we obtain

cos(a)2 + sin(a)2 = cos(0) = 1
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This shows that sin(a) and cos(a) are bounded which is not at all obvious from
the power series expression! In particular, we see that the matrix

R(a) =
(

cos(a) − sin(a)
sin(a) cos(a)

)
has determinant 1. Moreover, the above identities can be written in a concise
form as

R(a) ·R(b) = R(a+ b)
Since cos(0) = 1 and sin(0) = 0, we also have R(0) is the identity matrix. In
other words the map

R : R→ SL2(R)
is a group homomorphism from the additive group of real numbers to the
multiplicative group SL2(R) of 2 × 2 real matrices of determinant 1. In fact,
since R(a)t = R(−a), we see that it lands in the group SO2(R) of 2 × 2 real
orthogonal matrices of determinant 1.

The numbers e and π

The number e is defined as exp(1), we will see later that exp(x) can be thought
of as ex in some sense.

Defining π takes some more work. In what follows we define:

π = 2τ where τ is the smallest zero of cos(x) in the positive real line.

Note that cos(0) = 1, hence if cos(x) = 0 has a solution then (by continuity of
cos) there is a smallest positive solution. We will demonstrate the existence of
such a solution below.

We compute the series for cos(x) and sin(x) for x in the region [0, 2]. We have

x2k+2

(2k + 2)! = x2k

(2k)! ·
x2

(2k + 1)(2k + 2) ≤ x2k

(2k)!
4

3 · 4 = x2k

(2k)! ·
1
3 for k ≥ 1

x2k+3

(2k + 3)! = x2k+1

(2k + 1)! ·
x2

(2k + 2)(2k + 3) ≤ x2k

(2k)!
4

2 · 3 = x2k

(2k)! ·
2
3 for k ≥ 0

This means that the series
∞∑

k=1
(−1)k x2k

(2k)! and
∞∑

k=0
(−1)k x2k+1

(2k + 1)!

Are alternating series with decreasing terms for x in [0, 2]. Thus, the error in
the partial sum is at most the size of the first term which is dropped with sign.
Thus,

cos(2) = 1− 22

2! + 24

4! +
∞∑

k=3
(−1)k 22k

(2k)! ≤ 1− 2 + 16
24 = −1

3
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In particular, cos(2) < 0. Similarly

sin(x) = x− x3

3! +
∞∑

k=2
(−1)k x2k+1

(2k + 1)! ≥ x−
x3

6 = x

6 (6− x2) ≥ 0

for x in [0, 2].

Now, cos(0) = 1 and cos(2) < 0. By the intermediate value theorem, we see
that there is a number τ in the interval [0, 2] for which cos(τ) = 0. For later use,
we note that for this τ we have sin(τ) ≥ 0; since cos(τ)2 + sin(τ2) = 1, we get
sin(τ) = 1.

We have seen (using assignment 10 and the fundamental theorem of calculus)
that cos(x) = 1−

∫ x

0 sin(t)dt. This shows that cos(x) is a decreasing function of
x for x in the range [0, 2]. Hence, there is a unique solution for cos(x) = 0 in the
range [0, 2] and that is τ .

In summary, we have found a number τ (between 0 and 2) such that cos(τ) = 0,
and cos(x) > 0 for 0 ≤ x < τ . This proves that τ is the smallest positive solution
of cos(x) = 0. As mentioned above, we define π = 2τ .

We note that (cos(τ), sin(τ)) = (0, 1) so

R(τ) =
(

0 −1
1 0

)
Hence, R(π) = R(2τ) = R(τ)2 = −I, where I is the 2 × 2 identity matrix.
Similarly, R(2π) = I. By the fact that we have a group homomorphism,
R(x+ 2π) = R(x) · I = R(x). Hence, we obtain

(cos(x+ 2π), sin(x+ 2π)) = (cos(x), sin(x)

In other words, Sine and Cosine are periodic functions. This is far from obvious
by looking at the power series!

Complex numbers
Matrices of the form(

a −b
b a

)
=
(
a 0
0 a

)
+
(

0 −b
b 0

)
= a ·

(
1 0
0 1

)
+ b ·

(
0 −1
1 0

)
= aI + bJ

are closed under multiplication. In fact,

(a · I + b · J) · (c · I + d · J) = (ac− bd) · I + (ad+ bc) · J

In particular, we have J2 = −I. Since

(a · I + b · J) + (c · I + d · J) = (a+ b) · I + (c+ d) · J
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We further note that det(a · I + b · J) = a2 + b2 is non-zero unless a = b = 0.
Hence, the non-zero matrices of this type are invertible.

This collection C of matrices is called the field of complex numbers. We note that
if we look at the above multiplication and addition rules restricted to matrices
with b = 0, then we just have the usual laws of arithmetic of numbers except that
we are multiplying all numbers by the identity matrix I. Hence, this number
(complex) system C extends the usual (real) number system R.

Moreover, we note that each matrix a · I + b · J is uniquely determined by the
vector (

a
b

)
= (a · I + b · J) ·

(
1
0

)
Thus, we can also identity these matrices with points (a, b) in the plane where
multiplication and addition is given by

(a, b) + (c, d) = (a+ c, b+ d)
(a, b) · (c, d) = (ac− bd, ad+ bc)

This is called the Complex Plane and also denoted as C under the above
identification. As above, the usual real numbers are identified with points
of the form (a, 0) which constitute the Real Line R inside the complex plane C.
The special number ι = (0, 1) has the property that ι · ι = (−1, 0) which has
been identified with the real number 1 as above. Thus, the complex number
(a, b) is also written in the form a+ bι where a and b are real numbers.

Given a complex number a + bι and a positive integer n we have polynomial
functions Pn(a, b) and Qn(a, b) such that

(a+ bι)n = Pn(a, b) +Qn(a, b)ι

We put $P_0=1 $ and Q0 = 0 and consider the power series

f(t) =
∑
n=0

Pn(a, b)
n! tn and g(t) =

∑
n=0

Qn(a, b)
n! tn

Since (a+ bι) · (a− bι) = a2 + b2 we can check that

Pn(a, b)2 +Qn(a, b)2 = (a2 + b2)n

In particular |Pn(a, b)|≤ (a2 + b2)n/2. Now exp((a2 + b2)1/2t) converges for all
values of t. We can use this to show that f(t) and g(t) converge for all values of
t. From the identity

f(t) + g(t)ι =
∑
n=0

(a+ bι)n

n! tn

we see that we can think of f(t) + g(t)ι as exp((a+ bι)t).
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This motivates us to calculate

Pn(a, 0) = an

Qn(a, 0) = 0

Pn(0, b) =
{

0 n = 2k + 1
(−1)kb2k n = 2k

Qn(0, b) =
{

0 n = 2k
(−1)kb2k+1 n = 2k + 1

We then check the identity

exp((bι)t) = cos(bt) + sin(bt)ι

Note that the latter is identified with the matrix R(bt). We can apply the
Binomial Theorem (which has to be re-checked in this new context) to get

Pn(a, b) +Qn(a, b)ι = (a+ bι)n =
n∑

k=0

(
n

k

)
akbn−kιn−k

A slightly(!) more complicated application of the product rule for power series
then allows us to show that:

exp(at) exp((bι)t) = exp((a+ bι)t)

Putting t = 1 this gives

exp(a+ bι) = exp(a) exp(bι)

Some more algebra then shows us that this exp map is also a group homomor-
phism

exp : C→ C∗

where the first is considered as an additive group and the latter as the multi-
plicative group of non-zero complex numbers.

Euler’s identity

Using the definition of π given above and the results of the previous section we
see that

exp(πι) = −1

This famous identity was first asserted by Euler who then concluded (since it
looked miraculous to him) that it proved the existence of an supernatural being!
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