Power Series (Continued)

We continue our study of power series Y p- apz® and some special examples.

We have seen earlier that if, for some positive R, there is a positive constant M
and an integer n so that for all k£ > n we have

M

lak| < RF

then, the series Z,;“;O apz® converges uniformly and absolutely for the region
|z| < r for any r such that 0 < r < R.

We note that we have the equivalent inequality |ay|'/* < %ﬂe for k > n. Now,

for any positive constant M we can see that (M v k) k>n converges to 1. It follows
that limsup(|ag|"/*)i>1 < (1/R).

Conversely, if lim sup(|ag|'/*)x>1 < 1/S for some positive constant S. Then, for
any R such that 0 < R < S, we have 1/S < 1/R. So, by the definition of limit
superior, there is an n such that |ag|'/* < 1/R for all k > n. It follows that
lar] < 1/R* and thus we have uniform and absolute convergence in the region
|x| < r for any r such that 0 < r < R. Since this is true for every R such that
0 < R < S, we see that the power series converges uniformly and absolutely in
the region |z| < r for any r such that 0 < r < S.

For the reasons above, we put limsup(|a|'/*)i>1 = 1/R and call R the “radius
of convergence”. Note that if this limit superior is oo (which it can be) then
R = 0. In all other cases 1/R < o0, so that R > 0. In that case the power series
converges uniformly and absolutely in the region || < r where r is such that
0 < r < R. Warning: Note that the series does not in general converge for
|z| = R.

Error estimates

Even when the power series converges absolutely and uniformly in some region
like || < r, it is not always easy to calculate the sum. However, this does mean
that the series Zgio\ak\rk converges. As the latter is a series of non-negative
terms, the sequence of partial sums is increasing (actually it is non-decreasing
as some terms of the series may be 0) to its limit. Hence, given any positive
integer p, there is a positive integer ¢ such that the Z;iq+1\ak\rk < 1/p. Now,
for |z| <r we get

< Z lag|r® < 1/p

k=q+1

o0 q
E akwk — E akxk
k=0 k=0

Thus, given any positive integer p, we can choose a positive integer ¢ so that the
sum Y {_, arz® is at most 1/p away from the actual value of the power series.

Warning: We cannot decide in advance to take only a fixed number of terms.



Warning: It is not enough to stop at the point ¢ when |a,129"!| is small
enough. The error term is the sum of this term and all the remaining terms.

Products of power series

Give power series Z;O:O apz® and Zzozo brz® which converge uniformly and
absolutely in the region |z| < r for some positive . We want to write a power
series expression for the product. First of all, we note that formally (without
worrying about convergence)

(£) () ()

where, by equating coefficients, we obtain

n
Cp = § arbp_g
k=0

Let A =Y"77 lag|r* and B = 72 |bg|r*. Given a positive integer p. By the
convergence of the given power series we can find positive integers u and v so
that
> laklr® <1/(3pB) and > |belr* < 1/(3pA)
k=u-+1 k=w+1
We take w > 2max{u, v}, then if k +m > w, either k > u or m > v. Hence, we
see that

o0 u o0 o0 v
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Now, we have the inequalities
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k=u+1 m=v+1 k=u+1 m=v+1
We conclude
o0
> lerlr* < 1/p
k=w+1

It follows that the above formal product converges uniformly and absolutely and
that it converges to the product of the series.



Examples

We now apply the above calculations to work out some important examples of
such products.

Addition law for exp

We have seen that the power series ZZZO x* /k! converges absolutely and uni-
formly in |z| < r for every positive r. Putting x = at for some constant a, we
see that the power series Y .=, (a”/k!)t* converges absolutely and uniformly
in |t| < r for every positive r. Similarly, for some constant b, the power series
> neo (B /ENE* converges absolutely and uniformly in [¢t| < r for every positive
r. We now calculate the product of these series.

e} k 00 bmm 0 .
() () -5

As seen above, we have
=D 0
k=0

The Binomial theorem gives us

n k bnfk

Zn!-ﬁ~m=(a+b)”

It follows that ¢, = (a + b)™/(n!). Using the standard notation exp(x) for the
sum of the power series ZZOZO 2% /k!, the above identity becomes

exp(at) - exp(bt) = exp((a + b)t)

Putting ¢t = 1 we obtain exp(a) exp(b) = exp(a + b). In other words, exp turns
addition into multiplication.

The power series expression for exp(z) = Y 7o " /k! is a sum of positive terms
when x > 0. Hence, it follows that exp(z) > 0 for z > 0. Now, using the identity
exp(z) exp(—z) = 1, it follows that exp(—x) > 0 for £ > 0. This is not obvious
from the power series! Since exp(0) = 1, we see that exp(z) > 0 for all real

numbers x. In other words,
exp: R — R

By what has been said above this is a group homomorphism from the additive
group of real numbers to the multiplicative group of positive real numbers.



Addition Law for Sine and Cosine

Recall the power series

> x2k+1
Sln(x) = kzzo(—l)km

e l‘2k
cos(x) = kzzo(—l)k on)]

As above, we will calculate the product sin(at) cos(bt) as a power series in ¢.
Since sin(at) has only odd powers of ¢ and cos(bt) has only even powers of ¢, the
product is a power series of the form » 7 cnt?™ 1. As above the coefficient ¢,

is given by
=3 (V) (0 )

k=0

As before, we note the Binomial theorem

é(%“)! <(<2fi>x> | (@?ﬁln) ' ((Czbj:)!) ' (<2<fm_k];)111)!)) AR

We note that (—1)¥-(—1)"~* = (—=1)" and that we have only half the terms of the
above Binomial expansion! To complete it we need cos(at) sin(bt). In other words,
we see that if Y _ d,t*" "1 is the power series of sin(at) cos(bt) + cos(at) sin(bt),
then

v =03 ((aeem) (o) + (6m) (Gomem) =0

k=0

Comparing this with the power series for sin((a + b)t) we get the identity
sin(at) cos(bt) 4 cos(at) sin(bt) = sin((a + b)t)
By putting t = 1 we get the addition law for Sine
sin(a) cos(b) + cos(a) sin(b) = sin(a + b)
A similar calculation leads us to the identity
cos(a) cos(b) — sin(a) sin(b) = cos(a + b)

In particular, by taking b = —a, and using sin(—a) = —sin(a) (since the series
has only odd powers), we obtain

cos(a)? 4 sin(a)? = cos(0) = 1



This shows that sin(a) and cos(a) are bounded which is not at all obvious from
the power series expression! In particular, we see that the matrix

o= (Sl )

has determinant 1. Moreover, the above identities can be written in a concise
form as
R(a) - R(b) = R(a+)
Since cos(0) = 1 and sin(0) = 0, we also have R(0) is the identity matrix. In
other words the map
R:R — SLy(R)

is a group homomorphism from the additive group of real numbers to the
multiplicative group SLa(R) of 2 x 2 real matrices of determinant 1. In fact,
since R(a)? = R(—a), we see that it lands in the group SO3(R) of 2 x 2 real
orthogonal matrices of determinant 1.

The numbers e and 7

The number e is defined as exp(1), we will see later that exp(z) can be thought
of as e” in some sense.

Defining 7 takes some more work. In what follows we define:
m = 27 where 7 is the smallest zero of cos(z) in the positive real line.

Note that cos(0) = 1, hence if cos(z) = 0 has a solution then (by continuity of
cos) there is a smallest positive solution. We will demonstrate the existence of
such a solution below.

We compute the series for cos(x) and sin(z) for = in the region [0, 2]. We have

p2k+2 22k 2 2k 4 2k 1
— . <—n—=——.—- fJork>1

(2k+2)!  (2k)! (2k+1)(2k+2) (2k)!3-4  (2k)! 3

22k+3 22k+1 22 22k 4 2k 9
= . < —_— = -— fork>0

(2k+3)!  (2k+1)! (2k+2)(2k+3) (2k)! 2 - (Qk)! 3

This means that the series

e 2k+1

> (1) g ond Z 2k+ 2k + 1)!

k=1
Are alternating series with decreasing terms for x in [0,2]. Thus, the error in
the partial sum is at most the size of the first term which is dropped with sign.
Thus,

22 2 & 16 1
cos(2) =1— o +Z <1-2+ 5, =3
=3

3



In particular, cos(2) < 0. Similarly

2k+1 3

, B 0z 5
sin(x) x———|—z 2k+ 2R >x—E—E(6—x)ZO

for x in [0, 2].

Now, cos(0) = 1 and cos(2) < 0. By the intermediate value theorem, we see
that there is a number 7 in the interval [0, 2] for which cos(7) = 0. For later use,
we note that for this 7 we have sin(7) > 0; since cos(7)? + sin(7?) = 1, we get
sin(7) = 1.

We have seen (using assignment 10 and the fundamental theorem of calculus)
that cos(z) = 1 — [ sin(t)dt. This shows that cos(z) is a decreasing function of
x for z in the range [0, 2]. Hence7 there is a unique solution for cos(x) = 0 in the
range [0, 2] and that is 7.

In summary, we have found a number 7 (between 0 and 2) such that cos(7) = 0,
and cos(z) > 0 for 0 < z < 7. This proves that 7 is the smallest positive solution
of cos(z) = 0. As mentioned above, we define m = 27.

We note that (cos(7),sin(7)) = (0,1) so

7) = R(1)?> = —I, where I is the 2 x 2 identity matrix.
I. By the fact that we have a group homomorphism,
= R(z). Hence, we obtain

Hence, R(7) = R(2

Similarly, R(27) =

R(x+27)=R(z)-I
(cos(z + 2), sin(z + 27)) = (cos(z), sin(x)

In other words, Sine and Cosine are periodic functions. This is far from obvious
by looking at the power series!

Complex numbers

Matrices of the form

a —b a 0 0 —b 1 0 0 -1
(b a>_(0 a)+(b 0)_“'(0 1)”'(1 0)“‘]“"]
are closed under multiplication. In fact,
(a-T+b-J)-(c-T+d-J)=(ac—0bd)- I+ (ad+bc)-J

In particular, we have J? = —I. Since

(a-I4+b-J)+(c-I+d-J)=(a+b)- I+ (c+d)-J



We further note that det(a-I +b-.J) = a® + b? is non-zero unless a = b = 0.
Hence, the non-zero matrices of this type are invertible.

This collection C of matrices is called the field of complex numbers. We note that
if we look at the above multiplication and addition rules restricted to matrices
with b = 0, then we just have the usual laws of arithmetic of numbers except that
we are multiplying all numbers by the identity matrix I. Hence, this number
(complex) system C extends the usual (real) number system R.

Moreover, we note that each matrix a- I + b - J is uniquely determined by the

vector (Z) =(a-IT+b-J)- <(1))

Thus, we can also identity these matrices with points (a,b) in the plane where
multiplication and addition is given by

(a,b) + (c,d) = (a+c,b+d)
(a,b) - (¢,d) = (ac — bd, ad + be)

This is called the Complex Plane and also denoted as C under the above
identification. As above, the usual real numbers are identified with points
of the form (a,0) which constitute the Real Line R inside the complex plane C.
The special number ¢ = (0,1) has the property that ¢ - ¢ = (—1,0) which has
been identified with the real number 1 as above. Thus, the complex number
(a,b) is also written in the form a + bt where a and b are real numbers.

Given a complex number a + b and a positive integer n we have polynomial
functions P, (a,b) and @, (a,b) such that

(a+b0)" = Py(a,b) + Qnla,b)e
We put $P_0=1 $ and Q¢ = 0 and consider the power series
P,(a,b) , Qn(a,b) ,
ft) = Z 75“ )t and g(t) = Z 77(1' )t
n=0 ’ n=0 ’

Since (a + be) - (a — bt) = a? + b we can check that
Po(a,b)* + Qn(a,b)* = (a* + b*)"

In particular |P,(a,b)|< (a® + b?)"/2. Now exp((a® + b?)'/?t) converges for all
values of t. We can use this to show that f(¢) and g(¢) converge for all values of
t. From the identity

F0) + gty = 3 et

n!
n=0

we see that we can think of f(¢) + g(¢)¢ as exp((a + bu)t).



This motivates us to calculate

(=1)Fp?* n =2k

n =2k

a

0
=2k +1
Pn(o,b>={0 noe
{(l)kakJrl n=2k+1

We then check the identity
exp((be)t) = cos(bt) + sin(bt)e

Note that the latter is identified with the matrix R(bt). We can apply the
Binomial Theorem (which has to be re-checked in this new context) to get

P, (a,b) + Qnla,b)e = (a+ b)) = Zn: (n) akpnk ok

k=0 k

A slightly(!) more complicated application of the product rule for power series
then allows us to show that:

exp(at) exp((be)t) = exp((a + be)t)
Putting ¢ = 1 this gives
exp(a + bt) = exp(a) exp(be)

Some more algebra then shows us that this exp map is also a group homomor-
phism
exp: C—C*

where the first is considered as an additive group and the latter as the multi-
plicative group of non-zero complex numbers.

Euler’s identity

Using the definition of 7 given above and the results of the previous section we
see that
exp(mt) = —1

This famous identity was first asserted by Euler who then concluded (since it
looked miraculous to him) that it proved the existence of an supernatural being!
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