Taylor Series

Note that a function f is continuous at xg if f = a+ g where a is a constant and g
is o(|zr—w0|") at g, and a function is differentiable at f at zq if f = a+b(z—x¢)+h
where a and b are constants and h is o]z —zg|*) are zg. It thus seems worthwhile
to consider the possibility that

f=ao+ai(x —x) +az(x—20)? 4+ 4 an(x —x0)" + fn

where a; are constants and f,, is o(|z — x¢|™). Note that this can also be written
as

f:ao—l—al(x—a:o)+a2(a:—x0)2+~-~+an(x—xo)"+hn~(a:—x0)"

where h,, is o(|x — 10|°); in other words h,,(z¢) = 0 and h,, is continuous at x.
In the second form, it is reasonably clear that f is differentiable at some x # xg

if and only if h,, is differentiable at that x since for such z

f—(ao+ai(z—xzo)+ -+ an(z —x0)")

iy =
(l‘ _ .Z‘o)”

In particular, this condition does not necessarily mean that f is differentiable at
any point other than xzg.

Hence, we cannot write an expression like
f'(x) = a1 + 2az(x — o) + - - + nan(z — 20)" " + (fn)'

since neither f’ nor (f,)" may be defined!

Indefinite integrals

Reversing the process, let us consider an indefinite integral
xr
F(z) = b+/ f)de
zo
If we assume that f,, is continuous in some region |z — zg| < r for small enough

r, then this integral becomes

T — )2 x — x)" r
F(ﬂf)b+a0(zxo)+a1(20)+~~+an(n+0)lJr/zofn(t)dt

Now, f, is o(|x — z¢|™) means that for all k positive integers, there is a positive

integer p so that |f(x)| < (1/k)|x — xo|™ for all z in the region |z — zo| < 1/n.
For such x, we then get

I fn(t)dt‘ <

[ wmice- to>”|dt}

x
0



We calculate
gt

v et t>0 n
/ trdt = e D = i
0 - n+1 t S O n+ 1

Applying this, we get

|(z — zo)["*

n+1

/ fn(t)dt‘ < (1/K)

It follows easily that if F,, = [ f(t)dt, the F, is o(|z — zo|"*1).

In summary, if f = Y ;_;axz® + f, with f, in o(jz — z¢|™) at zo, and f, is
continuous at xq, then, if F' is an indefinite integral of f, then
(z —w0)* (z — @) !

F(z)=b+tao(z—z0) +a1—F——+ - +ay 1

Fy
) +

where F, is o(|z — xo|"™!) at xq.

We can apply this to the case where we assume that f is differentiable at all
points close enough to zg and the derivative f’ is continuous for such z. In that
case, we have an expression

f'(@) = f'(@o) + f" (o) (z = x0) + g()

where g(x) is o(Jz—xo|') at 2o and g is continuous in a small enough region around
x (since it is the difference of two continuous functions). By the fundamental
theorem of calculus, f is an indefinite integral of f’ and the above calculation
says that

f@) = f(xo) + (o) + " (w0)(z — z0)/2 + h(x)

where h(x) is o(|z — z0|?) at 2.

Multiple differentiability

We define a function f to be O-times (continuously) differentiable at xg, if f is
continuous at all z in some region |z — 29| < 7. Note that this is stronger than
the hypothesis that it is continuous at xg.

We now extend this notion to n-times (continuously) differentiable at zq for
n > 0 as follows.

We say that a function f is n-times (continuously) differentiable at zg, if its
derivative f’(z) exists for all z in some region |z — x¢| < r and the function f” is
n — 1-times is (continuously) differentiable. We use the notion f(") = (f(*=1) is
the iterated derivative of f; note the convention that f(©) = f and thus f() = f’.

Again note that asking for a function to be 1-times (continuously) differentiable
is a bit stronger than the requirement that f —1 is o(|x —zo|*) at xo for a suitable
linear function as we have the requirement that f’ exists and is continuous in
some region |z — zp| < 7.



Extending the arguments given in the previous section we can show that if f is n-
times differentiable at x in this sense, then we have the expression (n-truncated
Taylor series of f)

S (o)

(x—xo)2+~-'+T(x—xo)"+h

f"(w0)
2

f@) = f(zo) + f'(wo)(z — wo) +

where h is o(|x — zo|™) at zo. Note that the given condition on f means that h
is also n-times differentiable in some region |z — zo| < r.

By induction, we have an expression

f(”)(wo)

o ) g

f(@) = f'(@o) + f"(wo)(x — o) + -+ +
where g is o(Jx — xo|™). Since f’ is (n — 1)-times differentiable, so is g. In
particular, it is continuous and so the results of the previous section apply. Thus,
with h = [ g(t)dt we obtain the required expression.

Examples

We look at some examples of the above calculations.

Power Series

Suppose that f is given by a power series > - ax(x — x0)* which converges uni-
formly and absolutely in some region |z —xz¢| < r. As seen in Assignment 10, this
means that for any chosen non-negative integer n, the series Y .~ apa® ="+
converges absolutely and uniformly to a function g in the same region. Moreover,
we have also seen in Assignment 10 that both f and g are differentiable any
number of times. We easily obtain the expression

f(@) =ao+a1(z — o) + az(x — 0)> + -+ + an(z — 20)" + g(x)(x — 20)"

Since g is continuous at xq, we see that g(x)(x — z0)" ! is o(|z — 20|™) and so
the above is the n-truncated Taylor expansion of f at xy. We thus obtain the
identities

f (k) (z0)

A = ————

k!
which we can also obtain by calculating the derivatives term-by-term as in
Assignment 10.

Given a function f which is n-times differentiable at x( for every n, this may
tempt us into thinking that f is given by the power series Y =, ax(z — zo)"
with ap = £ /(k!). However, as we shall see below, this is not true!



Powers of ||

Recall that |z| is defined by

€T x>0
|z| =
-z <0

We note that the derivative does not exist at x = 0. However, the function is
continuous and o(|z|°) at 0. Consider the functions

" z>0
|z|" =
(=) =<0

We note that, if n > 1, then its derivative at = 0 exists. In fact, for x # 0, we
can apply the Chain Rule to get

d, nz"! x>0
7|$| = 1
dx (=D)"nz™!t <0
Since n > 1 we see that this function has a continuous extension to 0 given by
n|x|x™~1, which has the value 0 at 0. It follows that the n-truncated Taylor
series of |z|™ is

jal™ = 0+ Jal*

In other words, the n-truncated Taylor series only has the “remainder term”
g(z) = |z|™. The same argument can be made for |z|%z® for any positive integers
a and bl So the “terms” of the Taylor series do not give us any information
about these functions other than that they are o(|x|*T*~! at 0.

More pathologies

Let us examine the function below

~ Jexp(=1/2*) x#0
o -{; T

Fix a positive integer n. We first claim that f(x) is o(|z|*") at 0.

We know that exp(y) grows faster than y". In fact, exp(y) > y"*!/(n + 1)! and
the latter grows faster than y”. Given a positive integer k, if y > (n + 1)k,
then exp(y) > ky". Now, put y = 1/22, the condition y > (n + 1)k, becomes
2?2 < 1/((n + 1)!k). Choose a p so that p? > (n + 1)!k. Thus, we see that
if |z| < 1/p, then exp(1/z?) > k1/2*". Dividing both sides by exp(1/z?)
and multiplying by (1/k)|z|*", we get (1/k)|z|*® > |exp(—1/2?)|. In other
words, given a positive integer k, we have found a p so that for x in the region
0 < |z| < 1/p we have |exp(—1/2%)| < (1/k)|z|?". This condition is obvious for
x = 0. Thus we have proved the claim.



Now, for any continuous function g and for any integer n it follows from what
we have proved about asymptotic behaviour that the function

(@)
h(z) = {Zx exp(—1/x?) i i 8

is in o(]z|™ for any positive m. In particular, it is continuous at 0 and vanishes
there. By the standard arithmetic properties of continuous functions it is also
continuous for x # 0.

Now the function

h(z) z#0
hi(z) =4 @
1) {0 =0

is also continuous at 0 and vanishes there for the same reason. As seen earlier, this
means that the function h is differentiable at 0; moreover (dh/dx)(0) = h1(0) = 0.

Now assume that g is differentiable. The derivative of (g(z)/2")exp(—1/2?) at
x # 0 can be found by the application of the rules of differentiation:

% xrn xn antl xrn +4

where go(z) = 3¢’ (z) — na3g(x) — zg(x). We now put

28 exp(~1/2?) @ #0
ha(z) =4 °
0 z=0
Then, by the calculation above we see that hs(x) is the derivative of h at x for
all x. Moreover, as seen above hsy is continuous at 0. In other words, we have
shown that h is continuously differentiable and its derivative at 0 “of the same
type”.

Note that if g is a polynomial function then so is go. Thus, if we start with the
original function f(x), we see that all its derivatives are of type similar to h
with g a polynomial. (One proves this by induction.) All of these vanish at 0.

We conclude that f is a n-times differentiable function all of whose derivatives
at 0 are 0. However, it is obvious that f(1) = e~! # 0. Thus, we have a non-zero
function whose Taylor series is 0.

L (A expiorjet) = (L2 28 20 Y 1) = 208 expl-1/22)
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