Taylor Series

Note that a function f is continuous at x_{0} if $f=a+g$ where a is a constant and g is $o\left(\left|x-x_{0}\right|^{0}\right)$ at x_{0}, and a function is differentiable at f at x_{0} if $f=a+b\left(x-x_{0}\right)+h$ where a and b are constants and h is $o\left(\left|x-x_{0}\right|^{1}\right)$ are x_{0}. It thus seems worthwhile to consider the possibility that

$$
f=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+f_{n}
$$

where a_{i} are constants and f_{n} is $o\left(\left|x-x_{0}\right|^{n}\right)$. Note that this can also be written as

$$
f=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+h_{n} \cdot\left(x-x_{0}\right)^{n}
$$

where h_{n} is $o\left(\left|x-x_{0}\right|^{0}\right)$; in other words $h_{n}\left(x_{0}\right)=0$ and h_{n} is continuous at x_{0}. In the second form, it is reasonably clear that f is differentiable at some $x \neq x_{0}$ if and only if h_{n} is differentiable at that x since for such x

$$
h_{n}=\frac{f-\left(a_{0}+a_{1}\left(x-x_{0}\right)+\cdots+a_{n}\left(x-x_{0}\right)^{n}\right)}{\left(x-x_{0}\right)^{n}}
$$

In particular, this condition does not necessarily mean that f is differentiable at any point other than x_{0}.
Hence, we cannot write an expression like

$$
f^{\prime}(x)=a_{1}+2 a_{2}\left(x-x_{0}\right)+\cdots+n a_{n}\left(x-x_{0}\right)^{n+1}+\left(f_{n}\right)^{\prime}
$$

since neither f^{\prime} nor $\left(f_{n}\right)^{\prime}$ may be defined!

Indefinite integrals

Reversing the process, let us consider an indefinite integral

$$
F(x)=b+\int_{x_{0}}^{x} f(t) d t
$$

If we assume that f_{n} is continuous in some region $\left|x-x_{0}\right|<r$ for small enough r, then this integral becomes

$$
F(x)=b+a_{0}\left(x-x_{0}\right)+a_{1} \frac{\left(x-x_{0}\right)^{2}}{2}+\cdots+a_{n} \frac{\left(x-x_{0}\right)^{n+1}}{n+1}+\int_{x_{0}}^{x} f_{n}(t) d t
$$

Now, f_{n} is $o\left(\left|x-x_{0}\right|^{n}\right)$ means that for all k positive integers, there is a positive integer p so that $|f(x)| \leq(1 / k)\left|x-x_{0}\right|^{n}$ for all x in the region $\left|x-x_{0}\right| \leq 1 / n$. For such x, we then get

$$
\left|\int_{x_{0}}^{x} f_{n}(t) d t\right| \leq\left|\int_{x_{0}}^{x}(1 / k)\right|\left(t-t_{0}\right)^{n}|d t|
$$

We calculate

$$
\int_{0}^{x}|t|^{n} d t=\left\{\begin{array}{ll}
\frac{t^{n+1}}{n+1} & t \geq 0 \\
-\frac{(-t)^{n+1}}{n+1} & t \leq 0
\end{array}=x \frac{|x|^{n}}{n+1}\right.
$$

Applying this, we get

$$
\left|\int_{x_{0}}^{x} f_{n}(t) d t\right| \leq(1 / k) \frac{\left|\left(x-x_{0}\right)\right|^{n+1}}{n+1}
$$

It follows easily that if $F_{n}=\int_{x_{0}}^{x} f(t) d t$, the F_{n} is $o\left(\left|x-x_{0}\right|^{n+1}\right)$.
In summary, if $f=\sum_{k=0}^{n} a_{k} x^{k}+f_{n}$ with f_{n} in $o\left(\left|x-x_{0}\right|^{n}\right)$ at x_{0}, and f_{n} is continuous at x_{0}, then, if F is an indefinite integral of f, then

$$
F(x)=b+a_{0}\left(x-x_{0}\right)+a_{1} \frac{\left(x-x_{0}\right)^{2}}{2}+\cdots+a_{n} \frac{\left(x-x_{0}\right)^{n+1}}{n+1}+F_{n}
$$

where F_{n} is $o\left(\left|x-x_{0}\right|^{n+1}\right)$ at x_{0}.
We can apply this to the case where we assume that f is differentiable at all points close enough to x_{0} and the derivative f^{\prime} is continuous for such x. In that case, we have an expression

$$
f^{\prime}(x)=f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+g(x)
$$

where $g(x)$ is $o\left(\left|x-x_{0}\right|^{1}\right)$ at x_{0} and g is continuous in a small enough region around x (since it is the difference of two continuous functions). By the fundamental theorem of calculus, f is an indefinite integral of f^{\prime} and the above calculation says that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right) / 2+h(x)
$$

where $h(x)$ is $o\left(\left|x-x_{0}\right|^{2}\right)$ at x_{0}.

Multiple differentiability

We define a function f to be 0 -times (continuously) differentiable at x_{0}, if f is continuous at all x in some region $\left|x-x_{0}\right|<r$. Note that this is stronger than the hypothesis that it is continuous at x_{0}.

We now extend this notion to n-times (continuously) differentiable at x_{0} for $n>0$ as follows.

We say that a function f is n-times (continuously) differentiable at x_{0}, if its derivative $f^{\prime}(x)$ exists for all x in some region $\left|x-x_{0}\right|<r$ and the function f^{\prime} is n-1-times is (continuously) differentiable. We use the notion $f^{(n)}=\left(f^{(n-1}\right)^{\prime}$ is the iterated derivative of f; note the convention that $f^{(0)}=f$ and thus $f^{(1)}=f^{\prime}$.
Again note that asking for a function to be 1-times (continuously) differentiable is a bit stronger than the requirement that $f-l$ is $o\left(\left|x-x_{0}\right|^{1}\right)$ at x_{0} for a suitable linear function as we have the requirement that f^{\prime} exists and is continuous in some region $\left|x-x_{0}\right|<r$.

Extending the arguments given in the previous section we can show that if f is n times differentiable at x_{0} in this sense, then we have the expression (n-truncated Taylor series of f)
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+h$
where h is $o\left(\left|x-x_{0}\right|^{n}\right)$ at x_{0}. Note that the given condition on f means that h is also n-times differentiable in some region $\left|x-x_{0}\right|<r$.
By induction, we have an expression

$$
f^{\prime}(x)=f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{(n-1)!}\left(x-x_{0}\right)^{n-1}+g
$$

where g is $o\left(\left|x-x_{0}\right|^{n}\right)$. Since f^{\prime} is $(n-1)$-times differentiable, so is g. In particular, it is continuous and so the results of the previous section apply. Thus, with $h=\int_{x_{0}}^{x} g(t) d t$ we obtain the required expression.

Examples

We look at some examples of the above calculations.

Power Series

Suppose that f is given by a power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ which converges uniformly and absolutely in some region $\left|x-x_{0}\right| \leq r$. As seen in Assignment 10, this means that for any chosen non-negative integer n, the series $\sum_{k=n+1}^{\infty} a_{k} x^{k-n+1}$ converges absolutely and uniformly to a function g in the same region. Moreover, we have also seen in Assignment 10 that both f and g are differentiable any number of times. We easily obtain the expression

$$
f(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+g(x)\left(x-x_{0}\right)^{n+1}
$$

Since g is continuous at x_{0}, we see that $g(x)\left(x-x_{0}\right)^{n+1}$ is $o\left(\left|x-x_{0}\right|^{n}\right)$ and so the above is the n-truncated Taylor expansion of f at x_{0}. We thus obtain the identities

$$
a_{k}=\frac{f^{(k)}\left(x_{0}\right)}{k!}
$$

which we can also obtain by calculating the derivatives term-by-term as in Assignment 10.

Given a function f which is n-times differentiable at x_{0} for every n, this may tempt us into thinking that f is given by the power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ with $a_{k}=f^{(k)} /(k!)$. However, as we shall see below, this is not true!

Powers of $|x|$

Recall that $|x|$ is defined by

$$
|x|= \begin{cases}x & x \geq 0 \\ -x & x \leq 0\end{cases}
$$

We note that the derivative does not exist at $x=0$. However, the function $i s$ continuous and $o\left(|x|^{0}\right)$ at 0 . Consider the functions

$$
|x|^{n}= \begin{cases}x^{n} & x \geq 0 \\ (-x)^{n} & x \leq 0\end{cases}
$$

We note that, if $n>1$, then its derivative at $x=0$ exists. In fact, for $x \neq 0$, we can apply the Chain Rule to get

$$
\frac{d}{d x}|x|^{n}= \begin{cases}n x^{n-1} & x>0 \\ (-1)^{n} n x^{n-1} & x<0\end{cases}
$$

Since $n>1$ we see that this function has a continuous extension to 0 given by $n|x| x^{n-1}$, which has the value 0 at 0 . It follows that the n-truncated Taylor series of $|x|^{n}$ is

$$
|x|^{n}=0+|x|^{n}
$$

In other words, the n-truncated Taylor series only has the "remainder term" $g(x)=|x|^{n}$. The same argument can be made for $|x|^{a} x^{b}$ for any positive integers a and b ! So the "terms" of the Taylor series do not give us any information about these functions other than that they are $o\left(|x|^{a+b-1}\right.$ at 0 .

More pathologies

Let us examine the function below

$$
f(x)= \begin{cases}\exp \left(-1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Fix a positive integer n. We first claim that $f(x)$ is $o\left(|x|^{2 n}\right)$ at 0 .
We know that $\exp (y)$ grows faster than y^{n}. In fact, $\exp (y)>y^{n+1} /(n+1)$! and the latter grows faster than y^{n}. Given a positive integer k, if $y>(n+1)!k$, then $\exp (y)>k y^{n}$. Now, put $y=1 / x^{2}$, the condition $y>(n+1)!k$, becomes $x^{2}<1 /((n+1)!k)$. Choose a p so that $p^{2}>(n+1)!k$. Thus, we see that if $|x|<1 / p$, then $\exp \left(1 / x^{2}\right)>k 1 / x^{2 n}$. Dividing both sides by $\exp \left(1 / x^{2}\right)$ and multiplying by $(1 / k)|x|^{2 n}$, we get $(1 / k)|x|^{2 n}>\left|\exp \left(-1 / x^{2}\right)\right|$. In other words, given a positive integer k, we have found a p so that for x in the region $0<|x|<1 / p$ we have $\left|\exp \left(-1 / x^{2}\right)\right| \leq(1 / k)|x|^{2 n}$. This condition is obvious for $x=0$. Thus we have proved the claim.

Now, for any continuous function g and for any integer n it follows from what we have proved about asymptotic behaviour that the function

$$
h(x)= \begin{cases}\frac{g(x)}{x^{n}} \exp \left(-1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

is in $o\left(|x|^{m}\right.$ for any positive m. In particular, it is continuous at 0 and vanishes there. By the standard arithmetic properties of continuous functions it is also continuous for $x \neq 0$.

Now the function

$$
h_{1}(x)= \begin{cases}\frac{h(x)}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

is also continuous at 0 and vanishes there for the same reason. As seen earlier, this means that the function h is differentiable at 0 ; moreover $(d h / d x)(0)=h_{1}(0)=0$.
Now assume that g is differentiable. The derivative of $\left(g(x) / x^{n}\right) \exp \left(-1 / x^{2}\right)$ at $x \neq 0$ can be found by the application of the rules of differentiation:

$$
\frac{d}{d x}\left(\frac{g(x)}{x^{n}} \exp \left(-1 / x^{2}\right)\right)=\left(\frac{g^{\prime}(x)}{x^{n}}-n \frac{g(x)}{x^{n+1}}-\frac{g(x)}{x^{n}} \cdot \frac{2}{x^{3}}\right) \exp \left(-1 / x^{2}\right)=\frac{g_{1}(x)}{x^{n+4}} \exp \left(-1 / x^{2}\right)
$$

where $g_{2}(x)=x^{3} g^{\prime}(x)-n x^{3} g(x)-x g(x)$. We now put

$$
h_{2}(x)= \begin{cases}\frac{g_{2}(x)}{x^{n+4}} \exp \left(-1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Then, by the calculation above we see that $h_{2}(x)$ is the derivative of h at x for all x. Moreover, as seen above h_{2} is continuous at 0 . In other words, we have shown that h is continuously differentiable and its derivative at 0 "of the same type".

Note that if g is a polynomial function then so is g_{2}. Thus, if we start with the original function $f(x)$, we see that all its derivatives are of type similar to h with g a polynomial. (One proves this by induction.) All of these vanish at 0 .

We conclude that f is a n-times differentiable function all of whose derivatives at 0 are 0 . However, it is obvious that $f(1)=e^{-1} \neq 0$. Thus, we have a non-zero function whose Taylor series is 0 .

