
Taylor Series
Note that a function f is continuous at x0 if f = a+g where a is a constant and g
is o(|x−x0|0) at x0, and a function is differentiable at f at x0 if f = a+b(x−x0)+h
where a and b are constants and h is o(|x−x0|1) are x0. It thus seems worthwhile
to consider the possibility that

f = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + fn

where ai are constants and fn is o(|x− x0|n). Note that this can also be written
as

f = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + hn · (x− x0)n

where hn is o(|x− x0|0); in other words hn(x0) = 0 and hn is continuous at x0.

In the second form, it is reasonably clear that f is differentiable at some x 6= x0
if and only if hn is differentiable at that x since for such x

hn = f − (a0 + a1(x− x0) + · · ·+ an(x− x0)n)
(x− x0)n

In particular, this condition does not necessarily mean that f is differentiable at
any point other than x0.

Hence, we cannot write an expression like

f ′(x) = a1 + 2a2(x− x0) + · · ·+ nan(x− x0)n+1 + (fn)′

since neither f ′ nor (fn)′ may be defined!

Indefinite integrals
Reversing the process, let us consider an indefinite integral

F (x) = b +
∫ x

x0

f(t)dt

If we assume that fn is continuous in some region |x− x0| < r for small enough
r, then this integral becomes

F (x) = b + a0(x− x0) + a1
(x− x0)2

2 + · · ·+ an
(x− x0)n+1

n + 1 +
∫ x

x0

fn(t)dt

Now, fn is o(|x− x0|n) means that for all k positive integers, there is a positive
integer p so that |f(x)| ≤ (1/k)|x− x0|n for all x in the region |x− x0| ≤ 1/n.
For such x, we then get∣∣∣∣∫ x

x0

fn(t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

x0

(1/k)|(t− t0)n|dt

∣∣∣∣
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We calculate ∫ x

0
|t|ndt =

{
tn+1

n+1 t ≥ 0
− (−t)n+1

n+1 t ≤ 0
= x

|x|n

n + 1

Applying this, we get ∣∣∣∣∫ x

x0

fn(t)dt

∣∣∣∣ ≤ (1/k) |(x− x0)|n+1

n + 1

It follows easily that if Fn =
∫ x

x0
f(t)dt, the Fn is o(|x− x0|n+1).

In summary, if f =
∑n

k=0 akxk + fn with fn in o(|x − x0|n) at x0, and fn is
continuous at x0, then, if F is an indefinite integral of f , then

F (x) = b + a0(x− x0) + a1
(x− x0)2

2 + · · ·+ an
(x− x0)n+1

n + 1 + Fn

where Fn is o(|x− x0|n+1) at x0.

We can apply this to the case where we assume that f is differentiable at all
points close enough to x0 and the derivative f ′ is continuous for such x. In that
case, we have an expression

f ′(x) = f ′(x0) + f ′′(x0)(x− x0) + g(x)

where g(x) is o(|x−x0|1) at x0 and g is continuous in a small enough region around
x (since it is the difference of two continuous functions). By the fundamental
theorem of calculus, f is an indefinite integral of f ′ and the above calculation
says that

f(x) = f(x0) + f ′(x0) + f ′′(x0)(x− x0)/2 + h(x)
where h(x) is o(|x− x0|2) at x0.

Multiple differentiability
We define a function f to be 0-times (continuously) differentiable at x0, if f is
continuous at all x in some region |x− x0| < r. Note that this is stronger than
the hypothesis that it is continuous at x0.

We now extend this notion to n-times (continuously) differentiable at x0 for
n > 0 as follows.

We say that a function f is n-times (continuously) differentiable at x0, if its
derivative f ′(x) exists for all x in some region |x−x0| < r and the function f ′ is
n− 1-times is (continuously) differentiable. We use the notion f (n) = (f (n−1)′ is
the iterated derivative of f ; note the convention that f (0) = f and thus f (1) = f ′.

Again note that asking for a function to be 1-times (continuously) differentiable
is a bit stronger than the requirement that f− l is o(|x−x0|1) at x0 for a suitable
linear function as we have the requirement that f ′ exists and is continuous in
some region |x− x0| < r.
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Extending the arguments given in the previous section we can show that if f is n-
times differentiable at x0 in this sense, then we have the expression (n-truncated
Taylor series of f)

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2 (x− x0)2 + · · ·+ f (n)(x0)

n! (x− x0)n + h

where h is o(|x− x0|n) at x0. Note that the given condition on f means that h
is also n-times differentiable in some region |x− x0| < r.

By induction, we have an expression

f ′(x) = f ′(x0) + f ′′(x0)(x− x0) + · · ·+ f (n)(x0)
(n− 1)! (x− x0)n−1 + g

where g is o(|x − x0|n). Since f ′ is (n − 1)-times differentiable, so is g. In
particular, it is continuous and so the results of the previous section apply. Thus,
with h =

∫ x

x0
g(t)dt we obtain the required expression.

Examples
We look at some examples of the above calculations.

Power Series

Suppose that f is given by a power series
∑∞

k=0 ak(x−x0)k which converges uni-
formly and absolutely in some region |x−x0| ≤ r. As seen in Assignment 10, this
means that for any chosen non-negative integer n, the series

∑∞
k=n+1 akxk−n+1

converges absolutely and uniformly to a function g in the same region. Moreover,
we have also seen in Assignment 10 that both f and g are differentiable any
number of times. We easily obtain the expression

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + g(x)(x− x0)n+1

Since g is continuous at x0, we see that g(x)(x− x0)n+1 is o(|x− x0|n) and so
the above is the n-truncated Taylor expansion of f at x0. We thus obtain the
identities

ak = f (k)(x0)
k!

which we can also obtain by calculating the derivatives term-by-term as in
Assignment 10.

Given a function f which is n-times differentiable at x0 for every n, this may
tempt us into thinking that f is given by the power series

∑∞
k=0 ak(x − x0)k

with ak = f (k)/(k!). However, as we shall see below, this is not true!
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Powers of |x|

Recall that |x| is defined by

|x| =
{

x x ≥ 0
−x x ≤ 0

We note that the derivative does not exist at x = 0. However, the function is
continuous and o(|x|0) at 0. Consider the functions

|x|n =
{

xn x ≥ 0
(−x)n x ≤ 0

We note that, if n > 1, then its derivative at x = 0 exists. In fact, for x 6= 0, we
can apply the Chain Rule to get

d

dx
|x|n =

{
nxn−1 x > 0
(−1)nnxn−1 x < 0

Since n > 1 we see that this function has a continuous extension to 0 given by
n|x|xn−1, which has the value 0 at 0. It follows that the n-truncated Taylor
series of |x|n is

|x|n = 0 + |x|n

In other words, the n-truncated Taylor series only has the “remainder term”
g(x) = |x|n. The same argument can be made for |x|axb for any positive integers
a and b! So the “terms” of the Taylor series do not give us any information
about these functions other than that they are o(|x|a+b−1 at 0.

More pathologies

Let us examine the function below

f(x) =
{

exp(−1/x2) x 6= 0
0 x = 0

Fix a positive integer n. We first claim that f(x) is o(|x|2n) at 0.

We know that exp(y) grows faster than yn. In fact, exp(y) > yn+1/(n + 1)! and
the latter grows faster than yn. Given a positive integer k, if y > (n + 1)!k,
then exp(y) > kyn. Now, put y = 1/x2, the condition y > (n + 1)!k, becomes
x2 < 1/((n + 1)!k). Choose a p so that p2 > (n + 1)!k. Thus, we see that
if |x| < 1/p, then exp(1/x2) > k1/x2n. Dividing both sides by exp(1/x2)
and multiplying by (1/k)|x|2n, we get (1/k)|x|2n > |exp(−1/x2)|. In other
words, given a positive integer k, we have found a p so that for x in the region
0 < |x| < 1/p we have |exp(−1/x2)| ≤ (1/k)|x|2n. This condition is obvious for
x = 0. Thus we have proved the claim.
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Now, for any continuous function g and for any integer n it follows from what
we have proved about asymptotic behaviour that the function

h(x) =
{

g(x)
xn exp(−1/x2) x 6= 0

0 x = 0

is in o(|x|m for any positive m. In particular, it is continuous at 0 and vanishes
there. By the standard arithmetic properties of continuous functions it is also
continuous for x 6= 0.

Now the function

h1(x) =
{

h(x)
x x 6= 0

0 x = 0

is also continuous at 0 and vanishes there for the same reason. As seen earlier, this
means that the function h is differentiable at 0; moreover (dh/dx)(0) = h1(0) = 0.

Now assume that g is differentiable. The derivative of (g(x)/xn) exp(−1/x2) at
x 6= 0 can be found by the application of the rules of differentiation:

d

dx

(
g(x)
xn

exp(−1/x2)
)

=
(

g′(x)
xn
− n

g(x)
xn+1 −

g(x)
xn
· 2

x3

)
exp(−1/x2) = g1(x)

xn+4 exp(−1/x2)

where g2(x) = x3g′(x)− nx3g(x)− xg(x). We now put

h2(x) =
{

g2(x)
xn+4 exp(−1/x2) x 6= 0
0 x = 0

Then, by the calculation above we see that h2(x) is the derivative of h at x for
all x. Moreover, as seen above h2 is continuous at 0. In other words, we have
shown that h is continuously differentiable and its derivative at 0 “of the same
type”.

Note that if g is a polynomial function then so is g2. Thus, if we start with the
original function f(x), we see that all its derivatives are of type similar to h
with g a polynomial. (One proves this by induction.) All of these vanish at 0.

We conclude that f is a n-times differentiable function all of whose derivatives
at 0 are 0. However, it is obvious that f(1) = e−1 6= 0. Thus, we have a non-zero
function whose Taylor series is 0.
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