
Asymptotic Behaviour
We started the course by trying to understand how we can compare the growth
of various functions of positive integers for sufficiently large values. Now that
we are looking at functions of real numbers one can study something similar at
any point on the real line.

We say that a function f vanishes to order greater than r (r ≥ 0) at a point x0
if, given any positive integer k, there is a positive integer n such that

|f(x)| ≤ (1/k)|x− x0|r

for all x such that |x− x0| ≤ (1/n). (Here and later we follow the convention
that x0 = 1 for all x ≥ 0.)

The above is also written as f is o(|x− x0|r) at x0. This helps us to generalise
further (a favourite pastime of mathematicians!) and think of defining o(g) for
some function g!

Let us see how this explains some of the notions we have worked with so far.

Continuity

A function f is continuous at a point x0 if f − f(x0) is o(|x− x0|0)
at x0.

Recall that f is continuous at x0, if, given any positive integer k, there is a
positive integer n so that |f(x)−f(x0)|≤ (1/k) for all x such that |x−x0| ≤ 1/n.
This is precisely the given condition.

Differentiability

A function f has derivative f ′(x0)$ at a point x0 if and only if
f − f(x0)− f ′(x0)(x− x0) is o(|x− x0|1) at x0.

Recall that if f has derivative f ′(x0)$ at a point x0, then for every positive
integer k, there is a positive integer n so that

|f(x)− f(x0)− f ′(x0)(x− x0)| ≤ (1/k)|x− x0|

for all x such that |x− x0| ≤ 1/n. This is precisely the given condition.

Algebraic Properties
We now show a number of algebraic properties of this notion of a function being
o(|x− x0|r) at x0.

Multiplication by a constant

If f is o(|x−x0|r) at x0 and K is any constant, then Kf is o(|x−x0|r)
at x0 as well.
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Given a positive integer k, by the Archimedean principle, choose a positive
integer p so that p > k|K|. Now, since f is o(|x− x0|r) at x0, there is a positive
integer n so that |f(x)| ≤ (1/p)|x−x0|r. It follows that |Kf(x)| ≤ (1/k)|x−x0|r
for the same range of values of x.

Addition

If f and g are both o(|x− x0|r) at x0, then so is f + g.

Given a positive integer k, we have positive integers n and m such that

• |f(x)| ≤ (1/2k)|x− x0|r for x such that |x− x0| < 1/n
• |g(x)| ≤ (1/2k)|x− x0|r for x such that |x− x0| < 1/m

If q = max{m, n}, then we have

|(f + g)(x)| ≤ |f(x)|+ |g(x)| ≤ (1/k)|x− x0|r

for x such that |x− x0| < 1/q.

Nested conditions

If f is o(|x− x0|r) at x0 and r ≥ s ≥ 0, then f is also o(|x− x0|s) at
x0.

Given a positive integer k we choose a positive integer n so that |f(x)| ≤
(1/k)|x − x0|r for x such that |x − x0| ≤ 1/n. Since n is a positive integer
|x− x0| ≤ 1 it follows that |x− x0|r−s ≤ 1. Hence

|f(x)| ≤ (1/k)|x− x0|r−s|x− x0|s ≤ (1/k)|x− x0|s

The function |x− x0|r is o(|x− x0|s for r > s ≥ 0.

Since the function nr−s is an increasing function of n, given a positive integer k,
there is a positive integer n so that nr−s > k. It follows that

|x− x0|r = |x− x0|r−s|x− x0|s ≤ 1/nr−s|x− x0|s < (1/k)|x− x0|s

Product of functions

Given that f is o(|x − x0|r) at x0 and g is o(|x − x0|s) at x0, the
product f · g is o(|x− x0|r+s) at x0.

Given a positive integer k, we have positive integers n and m such that

• |f(x)| ≤ (1/k)|x− x0|r for x such that |x− x0| < 1/n
• |g(x)| ≤ (1/k)|x− x0|s for x such that |x− x0| < 1/m

It follows that

|(f · g)(x)|= |f(x)g(x)| ≤ (1/k2)|x− x0|r+s ≤ (1/k)|x− x0|r+s

since k ≥ 1 means 1/k ≤ 1. Hence we get the required condition.

In particular, we note that if f is o(|x− x0|r) and g is a continuous function

2



Given that f is o(|x − x0|r) at x0 and g is continuous at x0, the
product f · g is also o(|x− x0|r) at x0.

This is not a special case of the earlier result since we are not assuming that
g(x0) = 0.

Division

Given that f is o(|x− x0|r) at x0 with r ≥ 1, there is a function g
which is o(|x− x0|r−1) at x0 such that f(x) = g(x)(x− x0).

Let us define g as follows:

g(x) =
{

0 x = x0
f(x)
x−x0

x 6= x0

We will see below that if f is o(|x− x0|r) (for any r ≥ 0), then f(x0) = 0. So
we do get f(x) = g(x)(x− x0) for all x. Given a positive integer k, there is a
positive integer n so that, for all x with |x− x0| ≤ 1/n we have

|f(x)|≤ (1/k)|x− x0|r

When x 6= x0, this gives

|g(x)|≤ (1/k)|x− x0|r−1

On the other hand, since r ≥ 1, we have

|g(x0)|= 0 ≤ (1/k)|x0 − x0|r−1

since our convention is that x0 = 1.

A similar argument can be used to show that:

Given that f is o(|x− x0|r) at x0 with r ≥ 1, there is a function g
which is o(|x− x0|0) at x0 such that f(x) = g(x)|x− x0|r.

In this case, we define g as follows:

g(x) =
{

0 x = x0
f(x)
|x−x0|r x 6= x0

Note that in both cases g is a continuous function vanishing at x0.

Applications
The above algebraic properties have a few applications.

Value

If f is o(|x − x0|0) at x0 then f(x0) = 0. Note that the condition means that
|f(x0)| ≤ (1/k) for all positive integers k. Hence the result follows.
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Derivative

If f − g is o(|x− x0|1) at x0 and if f is differentiable at x0, then so is g and the
value g(x0) and the derivative g′(x0) of g at x0 are the same as those of f .

As seen above, if l(x) = f(x0) + f ′(x0)(x− x0) where f ′(x0) is the derivative of
f at x0, then f − l is o(|x− x0|1) at x0. By the additivity property we see that
g− l = (f − l)− (g− l) is also o(|x−x0|1) at x0. It follows that g is differentiable
at x0 and its value and derivative are the same as those of f .

Linearity of Derivative

Using the additivity of the o() conditions, we can easily show that if f and g are
differentiable at x0 and a is some constant, then af + g is differentiable at x0.
Moreover, if f ′(x0) and g′(x0) denote the derivatives of f and g at x0, then the
derivative of af + g at x0 is af ′(x0) + g′(x0). This is left as an exercise.

Product Rule

Given f and g are differentiable at x0. Let l(x) = f(x0) + f ′(x0)(x− x0) and
m(x) = g(x0) + g′(x0)(x− x0). We know that f − l and g −m are o(|x− x0|1)
at x0. We then have

f ·g = (l+(f− l)) ·(m+(g−m)) = l ·m+(f− l) ·m+ l ·(g−m)+(f− l) ·(g−m)

Since l and m are continuous functions (f − l) · m and l · (g − m) are also
o(|x − x0|1) at x0. Now, (f − l) · (g − m) is o(|x − x0|2) at x0, so it is also
o(|x− x0|1) as seen above.

We conclude that f · g − l · m is o(|x − x0|1) at x0. Thus, one of them is
differentiable at x0 if and only if the other one is; moreover, their values and
derivatives are the same. Now

l(x)m(x) = f(x0)g(x0) + f ′(x0)g(x0)(x− x0) + f(x0)g′(x0)(x− x0)
+ f ′(x0)g′(x0)(x− x0)2

As seen above the function f ′(x0)g′(x0)(x−x0)2 is o(|x−x0|1) at x0. So l ·m−L
is o(|x− x0|1) where

L(x) = f(x0)g(x0) + (f ′(x0)g(x0) + f(x0)g′(x0)) (x− x0)

It follows that the derivative of f · g at x0 is

f ′(x0)g(x0) + f(x0)g′(x0)

This rule is called the product rule for differentiation or the Leibniz rule.
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Chain Rule

Given a function f which is differentiable at x0 and takes the value y0 = f(x0),
and a function g which is differentiable at y0, we want to calculate the derivative
of g ◦ f (where (g ◦ f)(x) = g(f(x))) at x0.

Let f ′(x0) denote the derivative of f at x0. As seen above, f−f(x0)−f ′(x0)(x−
x0) is o(|x − x0|1). It further follows that there is a function f1(x) which is
o(|x− x0|0) such that

f(x)− f(x0)− f ′(x0)(x− x0) = f1(x)(x− x0)

In other words, we have

f(x) = f(x0) + f ′(x0)(x− x0) + f1(x)(x− x0)

where f1 is o(|x− x0|0). Similarly, we have

g(y) = g(y0) + g′(y0)(y − y0) + g1(y)(y − y0)

where g1 is o(|y − y0|0). We now calculate g(f(x)) by substitution (note that
y0 = f(x0)):

g(f(x)) = g(f(x0)) + g′(f(x0)) (f(x)− f(x0)) + g1(f(x)) (f(x)− f(x0))
= g(f(x0)) + g′(f(x0))f ′(x0)(x− x0)

+ g′(f(x0))f1(x)(x− x0) + g1(f(x))f ′(x0)(x− x0) + g1(f(x))f1(x)(x− x0)

We examine the last three terms to show that they vanish to order greater than
1 at x0.

• First of all f1(x) is o(|x− x0|0) so g′(f(x0))f1(x)(x− x0) is o(|x− x0|1) at
x0.

• Secondly, g1 is continuous at y0 = f(x0) and f is continuous at x0 so
g1(f(x)) is continuous at x0. Thus g1(f(x))f1(x)(x− x0) is o(|x− x0|1) at
x0.

• Finally, g1(y0) = 0 and f(x0) = y0, thus g1(f(x)) is o(|x − x0|0) at x0
(since it is continuous at has value 0 at x0). Thus g1(f(x))f ′(x0)(x− x0)
is o(|x− x0|1) at x0.

In summary, we have shown that

g(f(x))− g(f(x0))− g′(f(x0))f ′(x0)(x− x0)

is o(|x− x0|1) at x0. It follows that g ◦ f is differentiable at x0 and its derivative
at x0 is

(g ◦ f)′(x0) = g′(f(x0))f ′(x0)

This is called the Chain Rule for differentiation.
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Properties of differentiation
There are two notations used for the derivative of a function f at x0. One is
f ′(x0) and the second is (df/dx)(x0). The first is obvious easier to write but
can lead to some ambiguities. The second one is a bit cumbersome but has some
notational advantages.

Well-defined: : Given a function f which is differentiable at x0, there is a
uniquely defined number a such that (df/dx)(x0) = a.

Linearity: : Given functions f and g that are differentiable at x0 and a constant
a, the function af + g is differentiable at the point x0 and

d(af + g)
dx

(x0) = a
df

dx
(x0) + dg

dx
(x0)

Leibniz Rule: : Given functions f and g differentiable at the point x0, the
function f · g is differentiable at the point x0 and we have

d(f · g)
dx

(x0) = df

dx
(x0)g(x0) + f(x0) dg

dx
(x0)

Chain Rule: : Given a function f differentiable at the point x0 and a function g
differentiable at the point f(x0), the function g◦f (defined by (g◦f)(x) = g(f(x)))
is differentiable at x0 and

d(g ◦ f)
dx

(x0) = dg

dx
(f(x0)) df

dx
(x0)
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