Analysis in One Variable MTH102

have

Assignment 9

Solutions to Assignment 9

- 1. The following questions are about continuous functions on an interval [a, b] and convergence is with respect to $\|\cdot\|_{[a,b]}$ (in other words, uniform convergence).
- (1 mark)(a) Show that

$$\|f + g\| \le \|f\| + \|g\|$$

Solution: We have

 $|f(x) + q(x)| \le |f(x)| + |q(x)|$ As seen in the notes there are points c, d, e in [a, b] so that for all x in [a, b] we

$$|f(x) + g(x)| \le |f(c) + g(c)| = ||f + g||$$

$$|f(x)| \le |f(d)| = ||f||$$

$$|g(x)| \le |g(e)| = ||g||$$

It follows that

$$\begin{split} \|f + g\| &== |f(c) + g(c)| \\ &\leq |f(c)| + |g(c)| \leq |f(d)| + |g(e)| \\ &= \|f\| + \|g\| \end{split}$$

(1 mark)(b) Show that

$$\|f\cdot g\|\leq \|f\|\cdot\|g\|$$

Solution: We have $|f(x) \cdot g(x)| = |f(x)| \cdot |g(x)|$ As seen in the notes there are points c, d, e in [a, b] so that for all x in [a, b] we have $|f(x) \cdot g(x)| \le |f(c) \cdot g(c)|$ $= \|f \cdot g\|$ $|f(x)| \le |f(d)|$ = ||f|| $|g(x)| \le |g(e)|$ = ||g||It follows that $\|f \cdot g\| == |f(c) \cdot g(c)|$ $= |f(c)| \cdot |g(c)| \le |f(d)| \cdot |g(e)|$ = ||f|| + ||g||

- (1 (bonus)) (c) Find an example of non-zero functions f and g on [0, 1] such that $f \cdot g = 0$.
 - (d) If $(f_n)_{n\geq 1}$ converges to f and $(g_n)_{n\geq 1}$ converges to g, then show that $(f_n + g_n)_{n\geq 1}$ converges to f + g.

Solution: Given a positive integer k, choose n_1 so that

$$||f_n - f|| < 1/(2k)$$
 for all $n \ge n_1$

and n_2 so that

(1 mark)

$$||g_n - g|| < 1/(2k)$$
 for all $n \ge n_2$

It follows that, for $n \ge \max\{n_1, n_2\}$ we have

 $||(f_n + g_n) - (f + g)|| \le ||f_n - f|| + ||g_n - g||$

$$< 1/(2k) + 1/(2k) = 1/k$$

Since we can do this for every positive integer k, the conclusion follows.

(1 mark) (e) If $(f_n)_{n\geq 1}$ converges to f and $(g_n)_{n\geq 1}$ converges to g, then show that $(f_n \cdot g_n)_{n\geq 1}$ converges to $f \cdot g$.

Solution: Choose M > 1 so that ||f|| < M and ||g|| < M. Given a positive integer k, choose n_1 so that

 $||f_n - f|| < 1/(3Mk)$ for all $n \ge n_1$

and n_2 so that

 $||g_n - g|| < 1/(3Mk)$ for all $n \ge n_2$

It follows that, for $n \ge \max\{n_1, n_2\}$ we have

$$\begin{aligned} \|(f_n \cdot g_n) - (f \cdot g)\| &= \|(f_n - f) \cdot g_n + f \cdot (g_n - g)\| \\ &= \|(f_n - f) \cdot (g_n - g) + (f_n - f) \cdot g + f \cdot (g_n - g)\| \\ &\leq \|(f_n - f) \cdot (g_n - g)\| + \|(f_n - f) \cdot g\| + \|f \cdot (g_n - g)\| \\ &\leq \|(f_n - f)\| \cdot \|(g_n - g)\| + \|(f_n - f)\| \cdot \|g\| + \|f\| \cdot \|(g_n - g)\| \\ &\leq 1/(3Mk)^2 + M \cdot 1/(3Mk) + M \cdot 1/(3Mk) < 1/k \end{aligned}$$

Since we can do this for every positive integer k, the conclusion follows.

- 2. The following questions are about multiplicative inverses of continuous functions on an interval [a, b].
- (1 mark) (a) If $f(x) \neq 0$ for all x in [a, b], then show that there is a positive integer k so that |f(x)| > 1/k for all x in [a, b].

		Solution: As seen in the notes, there is a c in $[a, b]$ so that $ f(c) \le f(x) $ for all x in $[a, b]$. Since $f(c) \ne 0$, there is a positive integer k so that $ f(c) > 1/k$. The required result follows.
(1 mark)	(b)	If $f(x) \neq 0$ for all x in $[a, b]$, then show that $1/f$ is continuous in $[a, b]$ and $ (1/f) < k$ with k as in the previous part.
		Solution: Given that $(x_n)_{n\geq 1}$ is a sequence in $[a, b]$ that converges to x in $[a, b]$, we are given that $(f(x_n))_{n\geq 1}$ converges to $y = f(x)$ (since f is continuous). Since $f(x_n) \neq 0$ for all n , the sequence $(1/f(x_n))_{n\geq 1}$ is well-defined. Moreover, since $y = f(x) \neq 0$, the sequence $(1/f(x_n))_{n\geq 1}$ converges to $1/y = 1/f(x)$ (as seen in the arithmetic of sequences). Hence $1/f$ is continuous. Since $ f(x) \geq f(c) $ for all x in $[a, b]$, we see that $ 1/f(x) \leq 1/f(c) $. It follows that $ (1/f) = 1/f(c) $. The required inequality follows by the previous part.
(1 mark)	(c)	Give an example of a sequence $(f_n)_{n\geq 1}$ converges to f where $f_n(x) \neq 0$ for all n and all x , but $f(x) = 0$ for some x in $[a, b]$.
		Solution: For every positive integer n , we can define $f_n(x) = 1/n$ for all x in $[a, b]$. It is clear that $f(x) = 0$ for all x in $[a, b]$ and the convergence is uniform.
(1 mark)	(d)	Give an example as above with the additional condition that $ f_n = 1$ for all n .
		Solution: For every positive integer n we take the function f_n which is linear, takes the value 1 and a and the value $1/n$ at b . It is given by
		$f_n(x) = \frac{b-x}{b-a} + \frac{x-a}{n(b-a)}$
		It is clear that $0 \le f_n(x) \le 1$ for all x in $[a, b]$. So $ f_n = 1$ since $f_n(a) = 1$. One shows easily that $(f_n)_{n\ge 1}$ converges uniformly to the function $f(x) = (b - x)/(b - a)$ which has the property that $f(b) = 0$.
(1 mark)	(e)	If $(f_n)_{n\geq 1}$ converges to f and $f(x) \neq 0$ for all x in $[a, b]$ show that there are positive integers p and k so that $ f_n(x) > 1/k$ for all x in $[a, b]$ and for all $n \geq p$.
		Solution: As seen above there is a positive integer m so that $ f(x) > 1/m$ for all x in $[a, b]$. Since $(f_n)_{n\geq 1}$ converges to f , there is a positive integer p so that $ f_n - f < 1/(2m)$ for all $n \geq p$. This means that $ f_n(x) - f(x) < 1/2m$ for all x in $[a, b]$. This gives, for $n \geq p$ $1/m < f(x) \leq f(x) - f_n(x) + f_n(x) \leq 1/(2m) + f_n(x) $

As a result we get, for $n \ge p$

$$|f_n(x)| \ge 1/m - 1/(2m) = 1/(2m)$$

So we get the result required by taking k = 2m.

(f) If $(f_n)_{n\geq 1}$ converges to f and $f(x) \neq 0$, then with p as in the previous part, show that $(1/f_n)_{n\geq p}$ converges to 1/f.

> **Solution:** By the previous part, we have positive integers p and k so that $|f_n(x)| > 1/k$ for all x in [a, b] and for all $n \ge p$. Since $(f_n(x))_{n\ge 1}$ converges to f(x) it follows that $|f(x)| \ge 1/k$ for all x in [a, b]. Secondly, we see that $(1/f_n)$ is well defined for $n \ge p$ and as seen above it is continuous as well; similarly 1/fis also well-defined and continuous. We have, for all $n \ge p$ and for all x in [a, b]

$$\left|\frac{1}{f_n(x)} - \frac{1}{f(x)}\right| = \frac{|f(x) - f_n(x)|}{|f_n(x)||f(x)|} \le (k^2) ||f_n - f||$$

It follows that

$$||(1/f_n) - (1/f)|| \le k^2 ||f_n - f||$$

Since $(f_n)_{n\geq 1}$ converges to f, it follows easily that the left-hand side can be made as small as one likes by choosing a large enough n. Hence the result follows.

(1 mark)