Solutions to Assignment 9

1. The following questions are about continuous functions on an interval $[a, b]$ and convergence is with respect to $\|\cdot\|_{[a, b]}$ (in other words, uniform convergence).
(1 mark) (a) Show that

$$
\|f+g\| \leq\|f\|+\|g\|
$$

Solution: We have

$$
|f(x)+g(x)| \leq|f(x)|+|g(x)|
$$

As seen in the notes there are points c, d, e in $[a, b]$ so that for all x in $[a, b]$ we have

$$
\begin{array}{rlrl}
|f(x)+g(x)| & \leq|f(c)+g(c)| & =\|f+g\| \\
|f(x)| & \leq|f(d)| & & =\|f\| \\
|g(x)| & \leq|g(e)| & & =\|g\|
\end{array}
$$

It follows that

$$
\begin{aligned}
\|f+g\|==|f(c)+g(c)| & \\
\leq|f(c)|+|g(c)| \leq|f(d)|+|g(e)| & =\|f\|+\|g\|
\end{aligned}
$$

(1 mark) (b) Show that

$$
\|f \cdot g\| \leq\|f\| \cdot\|g\|
$$

Solution: We have

$$
|f(x) \cdot g(x)|=|f(x)| \cdot|g(x)|
$$

As seen in the notes there are points c, d, e in $[a, b]$ so that for all x in $[a, b]$ we have

$$
\begin{array}{rlrl}
|f(x) \cdot g(x)| & \leq|f(c) \cdot g(c)| & =\|f \cdot g\| \\
|f(x)| & \leq|f(d)| & & =\|f\| \\
|g(x)| & \leq|g(e)| & & =\|g\|
\end{array}
$$

It follows that

$$
\begin{aligned}
\|f \cdot g\|==|f(c) \cdot g(c)| & \\
& =|f(c)| \cdot|g(c)| \leq|f(d)| \cdot|g(e)|
\end{aligned}
$$

$$
=\|f\|+\|g\|
$$

(c) Find an example of non-zero functions f and g on $[0,1]$ such that $f \cdot g=0$.
(1 mark)
(d) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $\left(g_{n}\right)_{n \geq 1}$ converges to g, then show that $\left(f_{n}+g_{n}\right)_{n \geq 1}$ converges to $f+g$.

Solution: Given a positive integer k, choose n_{1} so that

$$
\left\|f_{n}-f\right\|<1 /(2 k) \text { for all } n \geq n_{1}
$$

and n_{2} so that

$$
\left\|g_{n}-g\right\|<1 /(2 k) \text { for all } n \geq n_{2}
$$

It follows that, for $n \geq \max \left\{n_{1}, n_{2}\right\}$ we have

$$
\left\|\left(f_{n}+g_{n}\right)-(f+g)\right\| \leq\left\|f_{n}-f\right\|+\left\|g_{n}-g\right\| \quad<1 /(2 k)+1 /(2 k)=1 / k
$$

Since we can do this for every positive integer k, the conclusion follows.
(e) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $\left(g_{n}\right)_{n \geq 1}$ converges to g, then show that $\left(f_{n} \cdot g_{n}\right)_{n \geq 1}$ converges to $f \cdot g$.

Solution: Choose $M>1$ so that $\|f\|<M$ and $\|g\|<M$.
Given a positive integer k, choose n_{1} so that

$$
\left\|f_{n}-f\right\|<1 /(3 M k) \text { for all } n \geq n_{1}
$$

and n_{2} so that

$$
\left\|g_{n}-g\right\|<1 /(3 M k) \text { for all } n \geq n_{2}
$$

It follows that, for $n \geq \max \left\{n_{1}, n_{2}\right\}$ we have

$$
\begin{aligned}
& \|\left(f_{n} \cdot g_{n}\right)- \\
& \quad(f \cdot g)\|=\|\left(f_{n}-f\right) \cdot g_{n}+f \cdot\left(g_{n}-g\right) \| \\
& \quad=\left\|\left(f_{n}-f\right) \cdot\left(g_{n}-g\right)+\left(f_{n}-f\right) \cdot g+f \cdot\left(g_{n}-g\right)\right\| \\
& \leq\left\|\left(f_{n}-f\right) \cdot\left(g_{n}-g\right)\right\|+\left\|\left(f_{n}-f\right) \cdot g\right\|+\left\|f \cdot\left(g_{n}-g\right)\right\| \\
& \leq\left\|\left(f_{n}-f\right)\right\| \cdot\left\|\left(g_{n}-g\right)\right\|+\left\|\left(f_{n}-f\right)\right\| \cdot\|g\|+\|f\| \cdot\left\|\left(g_{n}-g\right)\right\| \\
& \quad \quad \quad 1 /(3 M k)^{2}+M \cdot 1 /(3 M k)+M \cdot 1 /(3 M k)<1 / k
\end{aligned}
$$

Since we can do this for every positive integer k, the conclusion follows.
2. The following questions are about multiplicative inverses of continuous functions on an interval $[a, b]$.
(1 mark)
(a) If $f(x) \neq 0$ for all x in $[a, b]$, then show that there is a positive integer k so that $|f(x)|>1 / k$ for all x in $[a, b]$.

Solution: As seen in the notes, there is a c in $[a, b]$ so that $|f(c)| \leq|f(x)|$ for all x in $[a, b]$. Since $f(c) \neq 0$, there is a positive integer k so that $|f(c)|>1 / k$. The required result follows.
(1 mark)
(1 mark)
(1 mark)
(1 mark)
(b) If $f(x) \neq 0$ for all x in $[a, b]$, then show that $1 / f$ is continuous in $[a, b]$ and $\|(1 / f)\|<$ k with k as in the previous part.

Solution: Given that $\left(x_{n}\right)_{n \geq 1}$ is a sequence in $[a, b]$ that converges to x in $[a, b]$, we are given that $\left(f\left(x_{n}\right)\right)_{n \geq 1}$ converges to $y=f(x)$ (since f is continuous). Since $f\left(x_{n}\right) \neq 0$ for all n, the sequence $\left(1 / f\left(x_{n}\right)\right)_{n \geq 1}$ is well-defined. Moreover, since $y=f(x) \neq 0$, the sequence $\left(1 / f\left(x_{n}\right)\right)_{n \geq 1}$ converges to $1 / y=1 / f(x)$ (as seen in the arithmetic of sequences). Hence $1 / f$ is continuous.
Since $|f(x)| \geq|f(c)|$ for all x in $[a, b]$, we see that $|1 / f(x)| \leq|1 / f(c)|$. It follows that $\|(1 / f)\|=|1 / f(c)|$. The required inequality follows by the previous part.
(c) Give an example of a sequence $\left(f_{n}\right)_{n \geq 1}$ converges to f where $f_{n}(x) \neq 0$ for all n and all x, but $f(x)=0$ for some x in $[a, b]$.

Solution: For every positive integer n, we can define $f_{n}(x)=1 / n$ for all x in $[a, b]$. It is clear that $f(x)=0$ for all x in $[a, b]$ and the convergence is uniform.
(d) Give an example as above with the additional condition that $\left\|f_{n}\right\|=1$ for all n.

Solution: For every positive integer n we take the function f_{n} which is linear, takes the value 1 and a and the value $1 / n$ at b. It is given by

$$
f_{n}(x)=\frac{b-x}{b-a}+\frac{x-a}{n(b-a)}
$$

It is clear that $0 \leq f_{n}(x) \leq 1$ for all x in $[a, b]$. So $\left\|f_{n}\right\|=1$ since $f_{n}(a)=1$. One shows easily that $\left(f_{n}\right)_{n \geq 1}$ converges uniformly to the function $f(x)=(b-$ $x) /(b-a)$ which has the property that $f(b)=0$.
(e) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $f(x) \neq 0$ for all x in $[a, b]$ show that there are positive integers p and k so that $\left|f_{n}(x)\right|>1 / k$ for all x in $[a, b]$ and for all $n \geq p$.

Solution: As seen above there is a positive integer m so that $|f(x)|>1 / m$ for all x in $[a, b]$.
Since $\left(f_{n}\right)_{n \geq 1}$ converges to f, there is a positive integer p so that $\left\|f_{n}-f\right\|<$ $1 /(2 m)$ for all $n \geq p$. This means that $\left|f_{n}(x)-f(x)\right|<1 / 2 m$ for all x in $[a, b]$. This gives, for $n \geq p$

$$
1 / m<|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq 1 /(2 m)+\left|f_{n}(x)\right|
$$

As a result we get, for $n \geq p$

$$
\left|f_{n}(x)\right| \geq 1 / m-1 /(2 m)=1 /(2 m)
$$

So we get the result required by taking $k=2 m$.
(1 mark) (f) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $f(x) \neq 0$, then with p as in the previous part, show that $\left(1 / f_{n}\right)_{n \geq p}$ converges to $1 / f$.

Solution: By the previous part, we have positive integers p and k so that $\left|f_{n}(x)\right|>1 / k$ for all x in $[a, b]$ and for all $n \geq p$. Since $\left(f_{n}(x)\right)_{n \geq 1}$ converges to $f(x)$ it follows that $|f(x)| \geq 1 / k$ for all x in $[a, b]$. Secondly, we see that $\left(1 / f_{n}\right)$ is well defined for $n \geq p$ and as seen above it is continuous as well; similarly $1 / f$ is also well-defined and continuous. We have, for all $n \geq p$ and for all x in $[a, b]$

$$
\left|\frac{1}{f_{n}(x)}-\frac{1}{f(x)}\right|=\frac{\left|f(x)-f_{n}(x)\right|}{\left|f_{n}(x)\right||f(x)|} \leq\left(k^{2}\right)\left\|f_{n}-f\right\|
$$

It follows that

$$
\left\|\left(1 / f_{n}\right)-(1 / f)\right\| \leq k^{2}\left\|f_{n}-f\right\|
$$

Since $\left(f_{n}\right)_{n \geq 1}$ converges to f, it follows easily that the left-hand side can be made as small as one likes by choosing a large enough n. Hence the result follows.

