Analysis in One Variable MTH102

Solutions

(2 marks) 1. Does the following sequence $(x_n)_{n\geq 1}$ converge and what is the limit in case it converges?

$$x_n = \frac{3n^2 + n + 1}{2^n + 1}$$

Solution: For any positive integer k we have shown that, there is an n_k so that $k(3n^2 + n + 1) < 2^n + 1$ for all $n \ge n_0$. It follows that $x_n < 1/k$ for all $n \ge n_k$. It follows that $(x_n)_{n\ge 1}$ converges to 0.

2. Which of the following functions is continuous in the interval [0, 1]?

(2 marks)

(a)

(a) $\sum_{k=0}^{\infty} \frac{x^k}{2^k}$

r = 1.

$$f(x) = \begin{cases} 0 & \text{for } x < 1/2 \\ 1 & \text{for } x \ge 1/2 \end{cases}$$

Solution: If $x_n = (1/2) + (-1)^n/n$, then $f(x_n) = 0$ for n odd and $f(x_n) = 1$ for n even. Thus, $(f(x_n))_{n\geq 1}$ does not converge. However, $(x_n)_{n\geq 1}$ converges to (1/2). Hence, the function is not continuous.

$$(2 \text{ marks})$$
 (b)

$$f(x) = \begin{cases} x & \text{for } x < 1/2\\ 1 - x & \text{for } x \ge 1/2 \end{cases}$$

Solution: The function g(x) = x is continuous on [0, 1/2] and the function h(x) = 1 - x is continuous on [1/2, 1]. Also g(1/2) = h(1/2). The given function f is obtained by "patching" hence it is continuous.

3. Which of the following power series converges uniformly in the region $|x| \leq 1$?

(2 marks)

Solution: If $|x| \leq 1$, then $|x^k/2^k| \leq 1/2^k < 1/r^k$ for any 1 < r < 2. It follows that the power series converges uniformly in this region. Alternative solution. We have $\limsup |(1/2^k)|^{1/k} = 1/2$. Hence, the series converges uniformly for $|x| \leq r$ for any r such that (1/r) > (1/2); in particular for

(2 marks)		(b)	$\sum_{k=1}^{\infty} (-1)^k \frac{x^k}{k}$
			Solution: We put $x = -1$ to get the series $\sum_{k=1}^{\infty} (1/k)$ which is divergent. Hence, this series does not converge uniformly in $ x \leq 1$.
(1 mark)	4.	(a)	Find a function f on $[0, 1]$ such that $I(f, [0, y])$ is $3y - y^3$ for y such that $0 < y < 1$. (Here $I(f, [0, y])$ denotes the integral of $f(x)$ from 0 to y as defined in the notes.)
			Solution: By the result proved in the notes, the integral of $f(x) = 3 - 3x^2$ on the interval $[0, y]$ is $3y - y^3$.
(2 marks)		(b)	Is $3y - y^3$ increasing or decreasing or neither on the interval [0, 1].
			Solution: We note that $3 - 3x^2 \ge 0$ for $0 < x < 1$. It follows that $I(f, [0, y])$ is increasing for y in the interval $[0, 1]$.
(2 marks)		(c)	Given c such that $0 < c < 2$ is there a unique solution to the equation $y^3 - 3y + c = 0$ with y in the interval $[0, 1]$?
			Solution: We have shown that $g(y) = 3y - y^3$ is increasing for y in $[0, 1]$. Since it is continuous it takes every value in $[g(0), g(1)]$ for exactly one value of y ; we note that $[g(0), g(1)]$ is the interval $[0, 2]$.