Integration

Following the discussion in earlier sections, we now give a formal definition of the integral of a continuous function. It will exhibit the following properties:

1. Given a continuous function f on $[a, b]$, we will associate a number $I(f,[a, b])$ called the integral of f from a to b.
2. If f is a non-negative function on $[a, b]$, then the integral will be nonnegative. If, in addition, f is positive at some point of $[a, b]$, then the integral will be positive.
3. If c is a point in the interval $[a, b]$, then we will have the identity $I(f,[a, b])=$ $I(f,[a, c])+I(f,[c, b])$.
4. Given a positive number p, if we define $g(x)=f(p x)$ as a function on $[a / p, b / p]$, then we have $I(g,[a / p, b / p])=(1 / p) I(f,[a, b])$.
5. Given two continuous functions f and g on $[a, b]$ and a constant c, we have $I(c f+g,[a, b])=c I(f,[a, b])+I(g,[a, b])$.
6. Given a linear function $f(x)=c+d x$ in $[a, b]$, the integral is given by the area of the trapezium. In other words $I(f,[a, b])=(f(a)+f(b))(b-a) / 2$.

In fact, the above properties uniquely determine the integral!

Piecewise linear functions

Given a continuous function f on $[a, b]$ that piecewise linear with respect to the partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$. In other words, for t in [0, 1] and $x=(1-t) x_{i-1}+t x_{i}$ we have $f(x)=(1-t) f\left(x_{i-1}\right)+t f\left(x_{i}\right)$. Applying Rule 3 (as above) repeatedly, we have:

$$
I(f,[a, b])=I\left(f,\left[x_{0}, x_{1}\right]\right)+I\left(f,\left[x_{1}, x_{2}\right]\right)+\cdots+I\left(f\left[x_{n-1}, x_{n}\right]\right)=\sum_{i=1}^{n} I\left(f,\left[x_{i-1}, x_{i}\right]\right)
$$

Moreover, we note that for x in the interval $\left[x_{i-1}, x_{i}\right]$

$$
x=(1-t) x_{i-1}+t x_{i} \text { where } t=\frac{x-x_{i-1}}{x_{i}-x_{i-1}}
$$

A simple calculation shows that for x in the interval $\left[x_{i-1}, x_{i}\right]$,

$$
f(x)=(1-t) f\left(x_{i-1}\right)+t f\left(x_{i}\right)=\frac{f\left(x_{i-1}\right) x_{i}-f\left(x_{i}\right) x_{i-1}+x\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)}{x_{i}-x_{i-1}}
$$

In other words, it is ripe for an application of Rule 6. Hence, we have

$$
I\left(f,\left[x_{i-1}, x_{i}\right]\right)=\frac{f\left(x_{i-1}+f\left(x_{i}\right)\right.}{2}\left(x_{i}-x_{i-1}\right)
$$

Combining the two formulas for integrals we get

$$
I(f,[a, b])=\sum_{i=1}^{n} \frac{f\left(x_{i-1}+f\left(x_{i}\right)\right.}{2}\left(x_{i}-x_{i-1}\right)=T\left(f,\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)
$$

which is the trapezoidal rule for the integral of a piecewise linear continuous function on the interval.

Properties for trapezoidal rule

It is relatively easy to verify all the Rules (1)-(6) for the values obtained by the Trapezoidal rule applied to piecewise linear continuous functions. In fact, we have already done this in earlier sections.

General Continuous function

Given continuous functions f and g on the interval $[a, b]$ so that $f(x) \geq g(x)$ for all x, we can apply Rule 2 to conclude that

$$
I(f-g,[a, b]) \geq 0 \text { since }(f-g)(x)=f(x)-g(x) \geq 0
$$

Secondly, by applying Rule 5 to $f-g=(-1) g+f$ to obtain

$$
I(f-g,[a, b])=(-1) I(g,[a, b])+I(f,[a, b])=I(f,[a, b])-I(g,[a, b])
$$

It follows that $I(f,[a, b]) \geq I(g,[a, b]$.
In particular, if f is a continuous function, then we have the above inequality for all g is a piecewise linear continuous functions which satisfy $f(x) \geq g(x)$ for x in the interval $[a, b]$.

It is thus tempting to expect that $I(f,[a, b])$ is the supremum of all the $I(g,[a, b])$; the latter can be calculated using the trapezoidal rule above. Hence, this would give a way to calculate $I(f,[a, b])$ for a general continuous function. There are two problems that need to be resolved for this to work:

- We need to prove that the collection of values obtained by the trapezoidal rule for such piecewise linear continuous functions is bounded above.
- We need to extend the notion of supremum to bounded collections of numbers. (We only introduced the notion of supremum for a sequence of numbers.)

First of all, we have seen that if f is a continuous function on $[a, b]$, then the values $f(x)$ are bounded for x in this interval. In other words, there is a constant M so that $f(x) \leq M$ for all x in the interval. It follows that, if g is any piecewise linear continuous function on $[a, b]$ which satisfies $g(x) \leq f(x)$ for x in the interval $[a, b]$, then $g(x) \leq M$ for all x in the interval. We now see that

$$
I(g,[a, b])=T\left(g,\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} \frac{g\left(x_{i-1}+g\left(x_{i}\right)\right.}{2}\left(x_{i}-x_{i-1}\right) \leq M(b-a)
$$

for any suitable partition of $[a, b]$ into intervals $\left[x_{i-1}, x_{i}\right]$ on which g is linear. This shows that the collection of values of trapezoidal sums associated with piecewise linear continuous functions dominated by f on $[a, b]$ is bounded above.

Supremum of a bounded set

Given a set A of numbers, which is bounded above, we want to show that there is a supremum. By definition, this is a number b so that $a \leq b$ for every a in A $a n d$, if c is a number so that $a \leq c$ for every a in A, then $b \leq c$ (so that b is a "least upper bound" of A in some sense).

We proceed by the bisection method. Let x_{1} be some element of A and y_{1} be some upper bound of A. We define $z_{n}=\left(x_{n}+y_{n}\right) / 2$ in what follows. In each case: - Either $a \leq z_{n}$ for all a in A. In this case, we put $y_{n+1}=z_{n}$ and $x_{n+1}=x_{n}$. - Or, there is an a in A so that $a>z_{n}$. In this case, we put $x_{n+1}=a$ and $y_{n+1}=y_{n}$. We note that $a \leq y_{n}$ for all n and for all a in A. Similarly, we note that x_{n} lies in A for all n.

By the usual method of bisection one concludes that $\left(x_{n}\right)_{\neq 1}$ is non-decreasing and $\left(y_{n}\right)_{n \geq 1}$ is non-increasing; moreover, $\left(y_{n}-x_{n}\right)_{n \neq 1}$ is a sequence of positive numbers decreasing to 0 . It follows that $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ converge to the same number c; in fact $\left(x_{n}\right)_{n \geq 1}$ increases to c and $\left(y_{n}\right)_{n \geq 1}$ decreases to c.

Since $a \leq y_{n}$ for all n and for all a in A, we see that $a \leq c$ for all a in A. On the other hand, if $a \geq b$ for all a in A, then, in particular $x_{n} \leq b$ for all n and so $c \leq b$. This shows that c has the desired properties.

Trapezoidal Rule

In the previous subsection we have seen that $I(f,[a, b])$ is the supremum of the integrals $I(g,[a, b])$ where g runs over piecewise linear continuous functions on [a, b] with $f(x) \geq g(x)$ for all x in this interval. While this is useful for theoretical questions, from a practical standpoint the following is more useful.

For each positive integer n, let $x_{i}=a+(b-a)(i / n)$ so that $a=x_{0}<x_{1}<$ $\cdots<x_{n}=b$ is a partition of the interval $[a, b]$. We consider the piecewise linear continuous function f_{n} on $[a, b]$ which is linear on $\left.x_{i-1}, x_{i}\right]$ for $i=1, \ldots, n$ and satisfies $f_{n}\left(x_{i}\right)=f\left(x_{i}\right)$; in other words, f_{n} interpolates the values of f at x_{i}. By the formula above, we have

$$
I\left(f_{n},[a, b]\right)==T\left(f_{n},\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=1}^{n} \frac{f\left(x_{i-1}+f\left(x_{i}\right)\right.}{2}\left(x_{i}-x_{i-1}\right)
$$

(Note that it is $f\left(x_{i}\right)$ which appear on the right-hand side.)
By the continuity of f, given a positive integer k, we can choose n so that $|f(x)-f(y)|<1 / k$ whenever $|x-| y<(b-a) / n$ for x, y in $[a, b]$. In earlier sections, we have seen that this means that

$$
\left|f(x)-f_{n}(x)\right|<1 / k \text { for all } x \text { in }[a, b]
$$

In particular, we see that

$$
f_{n}(x)-1 / k<f(x)<f_{n}(x)+1 / k
$$

Thus,

$$
I\left(f_{n}-1 / k,[a, b]\right)<I(f,[a, b])<I\left(f_{n}+1 / k,[a, b]\right)
$$

We easily calculate

$$
I\left(f_{n}+1 / k,[a, b]\right)-I\left(f_{n}-1 / k,[a, b]\right)=2(b-a) / k
$$

Since $I(f,[a, b])$ and $I\left(f_{n},[a, b]\right)$ lie in the interval

$$
\left[I\left(f_{n}-1 / k,[a, b]\right), I\left(f_{n}+1 / k,[a, b]\right)\right]
$$

it easily follows that

$$
\left|I(f,[a, b])-I\left(f_{n},[a, b]\right)\right| \leq 2(b-a) / k
$$

Thus, by suitably choosing k, and consequently choosing n, we can make this as small as we like.

This gives us the trapezoidal rule for integration

$$
I(f,[a, b])=\lim (T(f, a, b, n))_{n \geq 1}
$$

where

$$
T(f, a, b, n)=\frac{b-a}{2 n} \sum_{i=1}^{n}\left(f\left(a+\frac{(b-a)(i-1)}{n}\right)+f\left(a+\frac{(b-a) i}{n}\right)\right)
$$

Convergence

More generally, one can obtain convergence of integrals in terms of the distance between continuous functions (as defined earlier),

$$
\|f-g\|_{[a, b]}=\sup \{|f(x)-g(x)|: x \text { in }[a, b]\}
$$

We have the inequality

$$
f-|f-g|_{[a, b]} \leq g \leq f+|f-g|_{[a, b]}
$$

Applying the Rules given above we easily prove

$$
|I(f,[a, b])-I(g,[a, b])| \leq\|f-g\|_{[a, b]}(b-a)
$$

As a consequence, one sees that if $\left(f_{n}\right)_{n \geq 1}$ is a sequence of continuous functions converging uniformly on the interval $[a, b]$ to a continuous function f, then the sequence $\left(I\left(f_{n},[a, b]\right)\right)_{n \geq 1}$ of integrals converges to $I(f,[a, b])$.

Integrals of polynomials and power series

It has been seen by direct computation that if $f(x)=a_{0}+a_{1} x+\cdots+a_{p} x^{p}$ is a polynomial function, then

$$
I(f,[0, y])=I\left(a_{0}+a_{1} x+\cdots+a_{p} x^{p},[0, y]\right)=a_{0} y+a_{1} \frac{y^{2}}{2}+\cdots+a_{p} \frac{y^{p+1}}{p+1}
$$

Moreover, by the above result on uniform convergence, we can extend this to power series as follows. Assume that the power series $\sum_{k=0}^{\infty} a_{n} x^{n}$ has radius of convergence R. This means that the sequence of partial sums (which are polynomial functions) converge uniformly for x such that $|x| \leq r<R$, for all $0<r<R$. Thus, given y such that $0<y<R$, it follows that

$$
I\left(\sum_{k=0}^{\infty} a_{n} x^{n},[0, y]\right)=\sum_{k=0}^{\infty} a_{n} \frac{y^{n+1}}{n+1}
$$

and the power series on the right hand side also converges uniformly for y such that $|y| \leq r<R$ for all $0<r<R$.

Standard Notation

Given the above results, which are consistent with the rules of integration found in calculus, it is more natural to use the notation

$$
\int_{a}^{b} f(x) d x=I(f,[a, b])
$$

This notation is also a convenient way to directly express Rule 4 since we get, (a special case of) the change of variable formula for $p>0$

$$
\int_{a / p}^{b / p} f(p x) d x=(1 / p) \int_{a}^{b} f(t) d t
$$

Secondly, we can also make sense of $\int_{a}^{b} f(x) d x$ for $a>b$ by defining

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

This is easily seen to be consistent with Rules 3 and 6 . Thus, we get a change of variable formula for all non-zero constants p

$$
\int_{a}^{b} f(t) d t=p \int_{a / p}^{b / p} f(p x) d x
$$

This notation is much more convenient than the notation $I(f,[a, b])$ and thus we will use it in future.

