
Integration
Following the discussion in earlier sections, we now give a formal definition of
the integral of a continuous function. It will exhibit the following properties:

1. Given a continuous function f on [a, b], we will associate a number I(f, [a, b])
called the integral of f from a to b.

2. If f is a non-negative function on [a, b], then the integral will be non-
negative. If, in addition, f is positive at some point of [a, b], then the
integral will be positive.

3. If c is a point in the interval [a, b], then we will have the identity I(f, [a, b]) =
I(f, [a, c]) + I(f, [c, b]).

4. Given a positive number p, if we define g(x) = f(px) as a function on
[a/p, b/p], then we have I(g, [a/p, b/p]) = (1/p)I(f, [a, b]).

5. Given two continuous functions f and g on [a, b] and a constant c, we have
I(cf + g, [a, b]) = cI(f, [a, b]) + I(g, [a, b]).

6. Given a linear function f(x) = c + dx in [a, b], the integral is given by the
area of the trapezium. In other words I(f, [a, b]) = (f(a) + f(b))(b− a)/2.

In fact, the above properties uniquely determine the integral!

Piecewise linear functions
Given a continuous function f on [a, b] that piecewise linear with respect to
the partition a = x0 < x1 < · · · < xn = b. In other words, for t in [0, 1] and
x = (1− t)xi−1 + txi we have f(x) = (1− t)f(xi−1) + tf(xi). Applying Rule 3
(as above) repeatedly, we have:

I(f, [a, b]) = I(f, [x0, x1])+I(f, [x1, x2])+· · ·+I(f [xn−1, xn]) =
n∑

i=1
I(f, [xi−1, xi])

Moreover, we note that for x in the interval [xi−1, xi]

x = (1− t)xi−1 + txi where t = x− xi−1

xi − xi−1

A simple calculation shows that for x in the interval [xi−1, xi],

f(x) = (1− t)f(xi−1) + tf(xi) = f(xi−1)xi − f(xi)xi−1 + x (f(xi)− f(xi−1))
xi − xi−1

In other words, it is ripe for an application of Rule 6. Hence, we have

I(f, [xi−1, xi]) = f(xi−1 + f(xi)
2 (xi − xi−1)
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Combining the two formulas for integrals we get

I(f, [a, b]) =
n∑

i=1

f(xi−1 + f(xi)
2 (xi − xi−1) = T (f, (x0, x1, . . . , xn))

which is the trapezoidal rule for the integral of a piecewise linear continuous
function on the interval.

Properties for trapezoidal rule

It is relatively easy to verify all the Rules (1)-(6) for the values obtained by the
Trapezoidal rule applied to piecewise linear continuous functions. In fact, we
have already done this in earlier sections.

General Continuous function
Given continuous functions f and g on the interval [a, b] so that f(x) ≥ g(x) for
all x, we can apply Rule 2 to conclude that

I(f − g, [a, b]) ≥ 0 since (f − g)(x) = f(x)− g(x) ≥ 0

Secondly, by applying Rule 5 to f − g = (−1)g + f to obtain

I(f − g, [a, b]) = (−1)I(g, [a, b]) + I(f, [a, b]) = I(f, [a, b])− I(g, [a, b])

It follows that I(f, [a, b]) ≥ I(g, [a, b].

In particular, if f is a continuous function, then we have the above inequality
for all g is a piecewise linear continuous functions which satisfy f(x) ≥ g(x) for
x in the interval [a, b].

It is thus tempting to expect that I(f, [a, b]) is the supremum of all the I(g, [a, b]);
the latter can be calculated using the trapezoidal rule above. Hence, this would
give a way to calculate I(f, [a, b]) for a general continuous function. There are
two problems that need to be resolved for this to work:

• We need to prove that the collection of values obtained by the trapezoidal
rule for such piecewise linear continuous functions is bounded above.

• We need to extend the notion of supremum to bounded collections of
numbers. (We only introduced the notion of supremum for a sequence of
numbers.)

First of all, we have seen that if f is a continuous function on [a, b], then the
values f(x) are bounded for x in this interval. In other words, there is a constant
M so that f(x) ≤M for all x in the interval. It follows that, if g is any piecewise
linear continuous function on [a, b] which satisfies g(x) ≤ f(x) for x in the
interval [a, b], then g(x) ≤M for all x in the interval. We now see that

I(g, [a, b]) = T (g, (x0, x1, . . . , xn)) =
n∑

i=1

g(xi−1 + g(xi)
2 (xi − xi−1) ≤M(b− a)
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for any suitable partition of [a, b] into intervals [xi−1, xi] on which g is linear.
This shows that the collection of values of trapezoidal sums associated with
piecewise linear continuous functions dominated by f on [a, b] is bounded above.

Supremum of a bounded set

Given a set A of numbers, which is bounded above, we want to show that there
is a supremum. By definition, this is a number b so that a ≤ b for every a in A
and, if c is a number so that a ≤ c for every a in A, then b ≤ c (so that b is a
“least upper bound” of A in some sense).

We proceed by the bisection method. Let x1 be some element of A and y1
be some upper bound of A. We define zn = (xn + yn)/2 in what follows. In
each case: - Either a ≤ zn for all a in A. In this case, we put yn+1 = zn and
xn+1 = xn. - Or, there is an a in A so that a > zn. In this case, we put xn+1 = a
and yn+1 = yn. We note that a ≤ yn for all n and for all a in A. Similarly, we
note that xn lies in A for all n.

By the usual method of bisection one concludes that (xn) 6=1 is non-decreasing
and (yn)n≥1 is non-increasing; moreover, (yn − xn)n 6=1 is a sequence of positive
numbers decreasing to 0. It follows that (xn)n≥1 and (yn)n≥1 converge to the
same number c; in fact (xn)n≥1 increases to c and (yn)n≥1 decreases to c.

Since a ≤ yn for all n and for all a in A, we see that a ≤ c for all a in A. On
the other hand, if a ≥ b for all a in A, then, in particular xn ≤ b for all n and so
c ≤ b. This shows that c has the desired properties.

Trapezoidal Rule
In the previous subsection we have seen that I(f, [a, b]) is the supremum of the
integrals I(g, [a, b]) where g runs over piecewise linear continuous functions on
[a, b] with f(x) ≥ g(x) for all x in this interval. While this is useful for theoretical
questions, from a practical standpoint the following is more useful.

For each positive integer n, let xi = a + (b − a)(i/n) so that a = x0 < x1 <
· · · < xn = b is a partition of the interval [a, b]. We consider the piecewise linear
continuous function fn on [a, b] which is linear on xi−1, xi] for i = 1, . . . , n and
satisfies fn(xi) = f(xi); in other words, fn interpolates the values of f at xi. By
the formula above, we have

I(fn, [a, b]) == T (fn, (x0, x1, . . . , xn)) =
n∑

i=1

f(xi−1 + f(xi)
2 (xi − xi−1)

(Note that it is f(xi) which appear on the right-hand side.)

By the continuity of f , given a positive integer k, we can choose n so that
|f(x) − f(y)| < 1/k whenever |x − |y < (b − a)/n for x, y in [a, b]. In earlier
sections, we have seen that this means that

|f(x)− fn(x)|< 1/k for all x in [a, b]
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In particular, we see that

fn(x)− 1/k < f(x) < fn(x) + 1/k

Thus,
I(fn − 1/k, [a, b]) < I(f, [a, b]) < I(fn + 1/k, [a, b])

We easily calculate

I(fn + 1/k, [a, b])− I(fn − 1/k, [a, b]) = 2(b− a)/k

Since I(f, [a, b]) and I(fn, [a, b]) lie in the interval

[I (fn − 1/k, [a, b]) , I (fn + 1/k, [a, b])]

it easily follows that

|I(f, [a, b])− I(fn, [a, b])| ≤ 2(b− a)/k

Thus, by suitably choosing k, and consequently choosing n, we can make this as
small as we like.

This gives us the trapezoidal rule for integration

I(f, [a, b]) = lim (T (f, a, b, n))n≥1

where

T (f, a, b, n) = b− a

2n

n∑
i=1

(
f

(
a + (b− a)(i− 1)

n

)
+ f

(
a + (b− a)i

n

))

Convergence
More generally, one can obtain convergence of integrals in terms of the distance
between continuous functions (as defined earlier),

‖f − g‖[a,b] = sup {|f(x)− g(x)| : x in [a, b]}

We have the inequality

f − |f − g|[a,b] ≤ g ≤ f + |f − g|[a,b]

Applying the Rules given above we easily prove

|I(f, [a, b])− I(g, [a, b])| ≤ ‖f − g‖[a,b](b− a)

As a consequence, one sees that if (fn)n≥1 is a sequence of continuous functions
converging uniformly on the interval [a, b] to a continuous function f , then the
sequence (I(fn, [a, b]))n≥1 of integrals converges to I(f, [a, b]).
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Integrals of polynomials and power series
It has been seen by direct computation that if f(x) = a0 + a1x + · · ·+ apxp is a
polynomial function, then

I(f, [0, y]) = I(a0 + a1x + · · ·+ apxp, [0, y]) = a0y + a1
y2

2 + · · ·+ ap
yp+1

p + 1

Moreover, by the above result on uniform convergence, we can extend this to
power series as follows. Assume that the power series

∑∞
k=0 anxn has radius

of convergence R. This means that the sequence of partial sums (which are
polynomial functions) converge uniformly for x such that |x| ≤ r < R, for all
0 < r < R. Thus, given y such that 0 < y < R, it follows that

I(
∞∑

k=0
anxn, [0, y]) =

∞∑
k=0

an
yn+1

n + 1

and the power series on the right hand side also converges uniformly for y such
that |y| ≤ r < R for all 0 < r < R.

Standard Notation
Given the above results, which are consistent with the rules of integration found
in calculus, it is more natural to use the notation∫ b

a

f(x)dx = I(f, [a, b])

This notation is also a convenient way to directly express Rule 4 since we get, (a
special case of) the change of variable formula for p > 0∫ b/p

a/p

f(px)dx = (1/p)
∫ b

a

f(t)dt

Secondly, we can also make sense of
∫ b

a
f(x)dx for a > b by defining∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

This is easily seen to be consistent with Rules 3 and 6. Thus, we get a change of
variable formula for all non-zero constants p∫ b

a

f(t)dt = p

∫ b/p

a/p

f(px)dx

This notation is much more convenient than the notation I(f, [a, b]) and thus we
will use it in future.
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