Uniform Convergence

1. The following questions are about continuous functions on an interval $[a, b]$ and convergence is with respect to $\|\cdot\|_{[a, b]}$ (in other words, uniform convergence).
(1 mark) (a) Show that

$$
\|f+g\| \leq\|f\|+\|g\|
$$

(1 mark)
(b) Show that

$$
\|f \cdot g\| \leq\|f\| \cdot\|g\|
$$

(1 (bonus))
(c) Find an example of non-zero functions f and g on $[0,1]$ such that $f \cdot g=0$.
(1 mark)
(d) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $\left(g_{n}\right)_{n \geq 1}$ converges to g, then show that $\left(f_{n}+g_{n}\right)_{n \geq 1}$ converges to $f+g$.
(1 mark)
(e) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $\left(g_{n}\right)_{n \geq 1}$ converges to g, then show that $\left(f_{n} \cdot g_{n}\right)_{n \geq 1}$ converges to $f \cdot g$.
2. The following questions are about multiplicative inverses of continuous functions on an interval $[a, b]$.
(1 mark) (a) If $f(x) \neq 0$ for all x in $[a, b]$, then show that there is a positive integer k so that $|f(x)|>1 / k$ for all x in $[a, b]$.
(1 mark) (b) If $f(x) \neq 0$ for all x in $[a, b]$, then show that $1 / f$ is continuous in $[a, b]$ and $\|(1 / f)\|<$ k with k as in the previous part.
(1 mark) (c) Give an example of a sequence $\left(f_{n}\right)_{n \geq 1}$ converges to f where $f_{n}(x) \neq 0$ for all n and all x, but $f(x)=0$ for some x in $[a, b]$.
(1 mark)
(d) Give an example as above with the additional condition that $\left\|f_{n}\right\|=1$ for all n.
(1 mark)
(e) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $f(x) \neq 0$ for all x in $[a, b]$ show that there are positive integers p and k so that $\left|f_{n}(x)\right|>1 / k$ for all x in $[a, b]$ and for all $n \geq p$.
(1 mark)
(f) If $\left(f_{n}\right)_{n \geq 1}$ converges to f and $f(x) \neq 0$, then with p as in the previous part, show that $\left(1 / f_{n}\right)_{n \geq p}$ converges to $1 / f$.

