Uniform Convergence

- 1. The following questions are about continuous functions on an interval [a, b] and convergence is with respect to $\|\cdot\|_{[a,b]}$ (in other words, uniform convergence).
- (1 mark) (a) Show that

$$||f + g|| \le ||f|| + ||g||$$

(1 mark) (b) Show that

 $\|f \cdot g\| \le \|f\| \cdot \|g\|$

- (1 (bonus)) (c) Find an example of non-zero functions f and g on [0,1] such that $f \cdot g = 0$.
 - (1 mark) (d) If $(f_n)_{n\geq 1}$ converges to f and $(g_n)_{n\geq 1}$ converges to g, then show that $(f_n + g_n)_{n\geq 1}$ converges to f + g.
 - (1 mark) (e) If $(f_n)_{n\geq 1}$ converges to f and $(g_n)_{n\geq 1}$ converges to g, then show that $(f_n \cdot g_n)_{n\geq 1}$ converges to $f \cdot g$.
 - 2. The following questions are about multiplicative inverses of continuous functions on an interval [a, b].
 - (1 mark) (a) If $f(x) \neq 0$ for all x in [a, b], then show that there is a positive integer k so that |f(x)| > 1/k for all x in [a, b].
 - (1 mark) (b) If $f(x) \neq 0$ for all x in [a, b], then show that 1/f is continuous in [a, b] and ||(1/f)|| < k with k as in the previous part.
 - (1 mark) (c) Give an example of a sequence $(f_n)_{n\geq 1}$ converges to f where $f_n(x) \neq 0$ for all n and all x, but f(x) = 0 for some x in [a, b].
 - (1 mark) (d) Give an example as above with the additional condition that $||f_n|| = 1$ for all n.
 - (1 mark) (e) If $(f_n)_{n\geq 1}$ converges to f and $f(x) \neq 0$ for all x in [a, b] show that there are positive integers p and k so that $|f_n(x)| > 1/k$ for all x in [a, b] and for all $n \geq p$.
 - (1 mark) (f) If $(f_n)_{n\geq 1}$ converges to f and $f(x) \neq 0$, then with p as in the previous part, show that $(1/f_n)_{n\geq p}$ converges to 1/f.