Computing integrals of polynomials

The trapezoidal rule for integration can be applied to the function x? on the
interval [0, 1] with the partition 0 < (1/n) < (2/n) < --- < (n/n) =1 to give

the approximation
n
k=1
of the integral I(z?,[0,1]). In this section we will calculate the limit of I,, and
use it to calculate the integral I(f(x), [a,b]) where f is any polynomial function
and [a, b] is any interval.
A summation identity for binomial functions
We have seen the following fundamental identity between binomial coeflicients
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Next, we note the elementary identity
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More generally, for a fixed positive integer r, we now claim a proof by induction

on n that
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When n = 0, this becomes (O) = (r}rl) in which both sides are 0 since » > 1.
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Suppose that we are given this identity for n — 1 for some positive integer n.

Then we have
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where we used the induction hypothesis for the second equality.

Sums of powers as a polynomial function

We will now use this to prove, by induction on p, that

where f,(n) is a polynomial of degree at most p in the variable n. First of all,
let us note that when p = 0, we have the identity
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and 1 is a polynomial of degree 0. So we have the result for p = 0. Now let us
assume the result for all ¢ < p for some positive integer p. We note that
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where g,_1(k) is a polynomial function of k of degree less than p. If
gp—l(k) = aoko =+ alk + -+ ap_lkpfl

then, we apply the induction hypothesis to
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to realise that hy(n) is a polynomial of degree at most p in the variable n. It

follows that
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Using the above summation identity for binomial coefficients, we get
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Now, as above
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where g,(n) is a polynomial of degree at most p in the variable n. Combining
these identities, we get
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where both h, and g, are polynomials of degree at most p in the variable n.
Multiplying by p! and moving hy(n) to the other side, we obtain
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Hence, we have the identity of the required type with f,(n) = plg,(n) — hp(n).



Estimation of I,
We use the identity proved above to write
n
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where ap(n) is a polynomial of degree at most p in the variable n.

By applying results proved in the section on polynomial growth, we see that
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It follows that
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Thus, we obtain I(z?,[0,1]) = 1/(p + 1) as required.

Scaling in axial directions

Suppose f is a piecewise linear continuous function on [a,b] which is linear
with respect to the partition a = 2y < 1 < --- < x, = b. Given positive
constants p and ¢ and consider the function g given by g(x) = ¢f(pz). Then g
is a piecewise linear continuous function on [a/p, b/p] given with respect to the

partition a/p = xo/p < x1/p < -+ < xn/p =b/p.
The trapezoidal rule applied to g gives
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For a general continuous function h, the integral I(h, [a,b]) is defined as a limit
of integrals of piecewise linear continuous approximations of h. Hence we deduce
> Given a continuous function f on [a,b] and positive constants p and ¢, let g
be the continuous function on [a/p, b/p] defined by g(x) = qf(pz), then we have

the identity I(g, [a/p,b/p]) = (¢/p)I(f, [a,b])

Integrals of sums of functions

If f and g are piecewise linear continuous functions on [a,b] which are linear
with respect to the partition ¢ = 9 < 1 < --- < x, = b, then it is clear that



f + g is also linear with respect to the same partition. Moreover, we calculate
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= I(f,[a,b]) + I(g, [a,b])

The integrals of general continuous functions are defined as limits of piecewise
linear continuous approximations of the functions. Moreover, suppose f; is an
approximation of f with error at most 1/p and g¢; is an approximation of g with
error at most 1/q. Then f; + g1 is an approximation of f + g with error at most
(1/p) + (1/q). Hence, we deduce > Given continuous functions f and g on [a, b]
we have the identity I(f + g, [a,b]) = I(f,[a,b]) + I(g, [a,b]).

Integrals of polynomials

We now combine the results of the previous three sections. First of all we get

I(akxkv [07 y])

NE

I{apx® + a1z' + -+ + a 2™, [0,y]) =

=~
I

0

Next, we note that if ¢ = ary* and p = 1/y, then the function g(z) = ayz*

on [0,y] is obtained from the function f(z) = z* on [0,1] by the identity
g(z) = qf (px). Tt follows that
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where we have also used the computation of I(z*¥,[0,1]).
Combining these identities we see that
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This completes the proof of a well-known formula in high-school calculus!
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