
Computing integrals of polynomials
The trapezoidal rule for integration can be applied to the function xp on the
interval [0, 1] with the partition 0 < (1/n) < (2/n) < · · · < (n/n) = 1 to give
the approximation

In =
n∑

k=1

(k − 1)p + kp

2np
· 1

n

of the integral I(xp, [0, 1]). In this section we will calculate the limit of In and
use it to calculate the integral I(f(x), [a, b]) where f is any polynomial function
and [a, b] is any interval.

A summation identity for binomial functions
We have seen the following fundamental identity between binomial coefficients(

n + 1
r + 1

)
=
(

n

r + 1

)
+
(

n

r

)
Next, we note the elementary identity

n∑
k=0

(
k

0

)
=
(

n + 1
1

)
More generally, for a fixed positive integer r, we now claim a proof by induction
on n that

n∑
k=0

(
k

r

)
=
(

n + 1
r + 1

)
When n = 0, this becomes

(0
r

)
=
( 1

r+1
)
in which both sides are 0 since r ≥ 1.

Suppose that we are given this identity for n − 1 for some positive integer n.
Then we have

n∑
k=0

(
k

r

)
=
(

n−1∑
k=0

(
k

r

))
+
(

n

r

)
=
(

n

r + 1

)
+
(

n

r

)
=
(

n + 1
r + 1

)
where we used the induction hypothesis for the second equality.

Sums of powers as a polynomial function
We will now use this to prove, by induction on p, that

n∑
k=0

kp = np+1

p + 1 + fp(n)

where fp(n) is a polynomial of degree at most p in the variable n. First of all,
let us note that when p = 0, we have the identity

n∑
k=0

k0 = n + 1 = n0+1

0 + 1 + 1
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and 1 is a polynomial of degree 0. So we have the result for p = 0. Now let us
assume the result for all q < p for some positive integer p. We note that(

k

p

)
= k(k − 1) · · · (k − p + 1)

p! = kp

p! + gp−1(k)

where gp−1(k) is a polynomial function of k of degree less than p. If

gp−1(k) = a0k0 + a1k + · · · + ap−1kp−1

then, we apply the induction hypothesis to

hp(n) =
n∑

k=0
gp−1(k) = a0

n∑
k=0

k0 + a1

n∑
k=0

k + · · · + ap−1

n∑
k=0

kp−1

to realise that hp(n) is a polynomial of degree at most p in the variable n. It
follows that

n∑
k=0

(
k

p

)
= 1

p!

(
n∑

k=0
kp

)
+ hp(n)

Using the above summation identity for binomial coefficients, we get(
n + 1
p + 1

)
= 1

p!

(
n∑

k=0
kp

)
+ hp(n)

Now, as above(
n + 1
p + 1

)
= (n + 1)n(n − 1) · · · (n − p + 1)

(p + 1)! = np+1

(p + 1)! + gp(n)

where gp(n) is a polynomial of degree at most p in the variable n. Combining
these identities, we get

1
p!

(
n∑

k=0
kp

)
+ hp(n) = np+1

(p + 1)! + gp(n)

where both hp and gp are polynomials of degree at most p in the variable n.
Multiplying by p! and moving hp(n) to the other side, we obtain

n∑
k=0

kp = np+1

p + 1 + p!gp(n) − hp(n)

Hence, we have the identity of the required type with fp(n) = p!gp(n) − hp(n).
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Estimation of In

We use the identity proved above to write

n∑
k=1

(k − 1)p + kp

2np
· 1

n
=

n−1∑
k=0

kp

2np+1 +
n∑

k=0

kp

2np+1 = (n − 1)p+1 + np+1

2(p + 1)np+1 + ap(n)
2np+1

where ap(n) is a polynomial of degree at most p in the variable n.

By applying results proved in the section on polynomial growth, we see that

lim
(

ap(n)
2np+1

)
n≥1

= 0

It follows that

lim(In)n≥1 = lim
(

(n − 1)p+1 + np+1

2(p + 1)np+1

)
n≥1

= 1
p + 1

Thus, we obtain I(xp, [0, 1]) = 1/(p + 1) as required.

Scaling in axial directions
Suppose f is a piecewise linear continuous function on [a, b] which is linear
with respect to the partition a = x0 < x1 < · · · < xn = b. Given positive
constants p and q and consider the function g given by g(x) = qf(px). Then g
is a piecewise linear continuous function on [a/p, b/p] given with respect to the
partition a/p = x0/p < x1/p < · · · < xn/p = b/p.

The trapezoidal rule applied to g gives

I(g, [a/p, b/p]) =
n∑

k=1

g(xi−1/p) + g(xi/p)
2 · xi − xi−1

p

=
n∑

k=1

qf(xi−1) + qf(xi)
2 · xi − xi−1

p
= (q/p)I(f, [a, b])

For a general continuous function h, the integral I(h, [a, b]) is defined as a limit
of integrals of piecewise linear continuous approximations of h. Hence we deduce
> Given a continuous function f on [a, b] and positive constants p and q, let g
be the continuous function on [a/p, b/p] defined by g(x) = qf(px), then we have
the identity I(g, [a/p, b/p]) = (q/p)I(f, [a, b])

Integrals of sums of functions
If f and g are piecewise linear continuous functions on [a, b] which are linear
with respect to the partition a = x0 < x1 < · · · < xn = b, then it is clear that
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f + g is also linear with respect to the same partition. Moreover, we calculate

I(f + g, [a, b]) =
n∑

k=1

f(xi−1) + g(xi−1) + (f(xi) + g(xi)
2 (xi − xi−1)

= I(f, [a, b]) + I(g, [a, b])

The integrals of general continuous functions are defined as limits of piecewise
linear continuous approximations of the functions. Moreover, suppose f1 is an
approximation of f with error at most 1/p and g1 is an approximation of g with
error at most 1/q. Then f1 + g1 is an approximation of f + g with error at most
(1/p) + (1/q). Hence, we deduce > Given continuous functions f and g on [a, b]
we have the identity I(f + g, [a, b]) = I(f, [a, b]) + I(g, [a, b]).

Integrals of polynomials
We now combine the results of the previous three sections. First of all we get

I(a0x0 + a1x1 + · · · + anxn, [0, y]) =
n∑

k=0
I(akxk, [0, y])

Next, we note that if q = akyk and p = 1/y, then the function g(x) = akxk

on [0, y] is obtained from the function f(x) = xk on [0, 1] by the identity
g(x) = qf(px). It follows that

I(akxk, [0, y]) = akyk

(1/y)I(xk, [0, 1]) = ak
yk+1

k + 1

where we have also used the computation of I(xk, [0, 1]).

Combining these identities we see that

I(a0x0 + a1x1 + · · · + anxn, [0, y]) = a0
y1

1 + a1
y2

2 + · · · + an
yn+1

n + 1

This completes the proof of a well-known formula in high-school calculus!
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