Solutions to Assignment 8

(2 marks) 1. For each $a>0$ show that there is a unique positive solution $f(a)$ of the equation $x^{3}+x=a$. Moreover, show that the function f defined as $a \mapsto f(a)$ is a continuous function.

Solution: For any positive integer n, the function g on the interval $[0, n]$ defined by $g(x)=x^{3}+x$ is continuous and increasing (it is the sum of two increasing functions).
Hence, as shown in the notes it has a continuous inverse on the interval $[g(0), g(n)]$. (1 Mark for this part).
Since $g(0)=0$ and $g(n)>n$, given any positive number a it lies in a interval of the form $[g(0), g(n)]$ for some a (Archimedean principle). (1 Mark for this part)
(3 marks) 2. For a positive continuous function f on the interval $[a, b]$, let $I(f,[a, b])$ denote the area of the region $A(f)$ as described in the notes. For any positive numbers p and q, let us define the function g on $[a / p, b / p]$ by $g(x)=q f(p x)$. What is $I(g,[a / p, b / p])$ in terms of $I(f,[a, b])$? Justify your answer. (Hint: First examine the case when the region is a trapezium.)

Solution: Compare the trapezium with corners $(a, 0),(a, c),(b, d)$ and $(b, 0)$ with the trapezium with corners $(a / p, 0),(a / p, q c),(b / p, q d)$ and $(b / p, 0)$. The areas are

$$
\frac{(c+d)(b-a)}{2} \text { and } \frac{q(c+d)(b-a)}{2 p}
$$

(1 Mark for this calculation.)
In other words, scaling by $1 / p$ in the x-direction and by q in the y-direction in the plane leads to scaling of the area of a trapezium by q / p. Since the areas we are calculating are limits of sums of areas of such trapeziums, the same applies to all such areas. (1 Mark for this observation.)
Since the region $A(g)$ is obtained from the region $A(f)$ by such a scaling we see that $I(g,[a / p, b / p])=(q / p) I(f,[a, b])$. (1 Mark for this calculation).
3. By the trapezoidal rule we get an approximation of $I\left(x^{2},[0,1]\right)$ as

$$
I_{n}=\sum_{k=0}^{n-1} \frac{k^{2}+(k+1)^{2}}{2 n^{2}} \frac{1}{n}
$$

by using the partition $0<1 / n<2 / n<\cdots<1$. In the following sequence of exercises we show that the sequence $\left(I_{n}\right)_{n \geq 1}$ converges to $1 / 3$.
(1 mark)
(1 mark)
(1 mark)
(c) Show the identities

$$
\begin{aligned}
\sum_{k=0}^{n} k & =\binom{n+1}{2} \\
\sum_{n=0}^{n}\left(k^{2}-k\right) & =2\binom{n+1}{3}
\end{aligned}
$$

Solution: The previous exercise, for the case $r=1$ gives

$$
\sum_{k=0}^{n} k=\sum_{k=0}^{n}\binom{k}{1}=\binom{n+1}{2}
$$

Similarly, for the case $r=2$ it gives

$$
\sum_{k=0}^{n}\left(k^{2}-k\right)=\sum_{k=0}^{n} 2\binom{k}{2}=2\binom{n+1}{3}
$$

(d) Use the identities above to calculate the limit of I_{n}.

Solution: We have

$$
\sum_{k=0}^{n-1} k^{2}=\sum_{k=0}^{n-1}\left(k^{2}-k\right)+\sum_{k=0}^{n-1} k=2\binom{n}{3}+\binom{n}{2}
$$

Hence, we have

$$
I_{n}=\frac{1}{2 n^{3}}\left(2\binom{n}{3}+\binom{n}{2}+2\binom{n+1}{3}+\binom{n+1}{2}\right)
$$

(1 Mark for this observation.)
We now calculate

$$
\begin{aligned}
& I_{n}=\frac{2 n(n-1)(n-2)}{2 n^{3}(3!)}+\frac{n(n-1)}{2 n^{3}(2!)}+\frac{2(n+1) n(n-1)}{2 n^{3}(3!)}+\frac{(n+1) n}{2 n^{3}(2!)} \\
= & \frac{(1-(1 / n))(1-(2 / n))}{6}+\frac{(1-(1 / n))}{4 n}+\frac{(1+(1 / n))(1-(1 / n))}{6}+\frac{(1+(1 / n))}{4 n}
\end{aligned}
$$

It is now clear the the limit of $\left(I_{n}\right)_{n \geq 1}$ is $1 / 6+1 / 6=1 / 3$. (1 Mark for this calculation.)

