
Distance between functions
It is useful to re-cast some of the notions about convergence of functions in terms
of a suitable notion of “distance” between functions. The basic idea is to base
this on the difference between the values of the functions.

Maxima and minima of continuous functions
Given a continuous function f on an interval [a, b], we want to show that there is
a point w in [a, b] with the property that f(w) ≥ f(x) for every x in the interval
[a, b].

Given a positive integer k, there is a partition a = x0 < x1 < · · · < xn = b of the
interval so that for x, y in the interval [xi−1, xi], we have |f(x)− f(y)| < 1/k.
It follows that

f(x) ≤ f(xi) + 1/k for x in [xi−1, xi]

Combining this for all i, we see that

f(x) ≤ max{f(x0), f(x1), . . . , f(xn)}+ 1/k for x in [a, b]

Since we are taking the maximum of a finite set of numbers, this maximum
is attained at (at least) one of the xi’s; let us denote this as wk and let zk =
f(wk) + 1/k.

Since (wk)k≥1 is a sequence of points in the interval [a, b], it has a convergent
subsequence (wkp)p≥1. For example, we know that lim sup(wk)k≥1 is the limit of
a suitable subsequence of (wk)k≥1. We also note that the limit w = lim(wkp)p≥1
lies in the interval [a, b]. Since the function f is continuous at w, it follows that
f(w) = lim(f(wkp

))p≥1. Now

lim(zkp
)p≥1 = lim(f(wkp

+ 1/kp)p≥1 = lim(f(wkp
))p≥1 + lim(1/kp)p≥1 = f(w)

Given any x in the interval [a, b] we have f(x) ≤ zkp for all p ≥ 1. It follows
that f(x) ≤ f(w). Hence, we have the required result.

The approach for the minimum of a continuous function is similar. We can also
just observe that the minimum of f is the negative of the maximum of −f .

The norm and uniform convergence
We can now define the “magnitude” or the norm ‖f‖ of a continuous function
f on [a, b] as the maximum value of |f | on this interval. (Recall that we have
earlier shown that |f | is also a continuous function.) Occasionally, when we want
to be explicit about the interval, we also write this as ‖f‖[a,b].

The distance between two continuous functions f and g can now be prescribed
as ‖f − g‖. It is the maximum of the differences |f(x)− g(x)| as x varies over
[a, b]. With this notion of distance, the notions of uniform convergence can be
re-written as follows.
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A sequence of continuous functions (fn)n≥1 converges uniformly to a function f if,
given any positive integer k, there is a positive integer nk so that ‖fn−f‖ < 1/k
for all n ≥ nk.

A sequence of continuous functions (fn)n≥1 satisfies the Cauchy criterion for
convergence if, given any positive integer k, there is a positive integer nk so that
‖fn − fm‖ < 1/k for all n, m ≥ nk. In this case, (as shown in an earlier section)
there is a continuous function f so that (fn)n≥1 converges to it.

It is worth noting that above two paragraphs are almost identical to the definitions
given for convergence of a sequence of numbers except that distance between
numbers has been replaced by the distance between functions.

Approximations
In an earlier section we saw that, given a continuous function f on [a, b] and
a positive integer k, we can find a piecewise linear continuous function g with
the property that |f(x)− g(x)| < 1/k for all x in the interval [a, b]. This can be
re-interpreted as saying that ‖f − g‖ < 1/k.

We can say this in a different way. Given any continuous function f on [a, b]
which we want to approximate to a given accuracy 1/k, there is a piecewise
linear continuous function g which gives such an approximation. Note that g is
likely to be much easier to calculate than f in general, especially on a computer.

Sometimes, we want a “formula” for the approximation. This is the content of
the “Weierstrass approximation theorem” which we will merely state and not
prove.

Given any continuous function f on [a, b] which we want to approxi-
mate to a given accuracy 1/k, there is a polynomial function g on
[a, b] which gives such an approximation.

Though it may appear that such a “formula” is better than a piecewise linear
approximation, the latter is often easier to calculate on a computer than a
polynomial. However, this polynomial approximation is very useful in theory.

In the case of the interval [0, 1] one can give a very explicit sequence of polynomials
that converges to a given continuous function f . These are called the Bernstein
polynomials:

fn(x) =
n∑

k=0
f

(
k

n

)(
n

k

)
xk(1− x)n−k

By translating and scaling the interval [a, b], this result can be extended to all
intervals.

It is important to note that the coefficient of xp in fn(x) will not converge in
general. Hence, the Weierstrass approximation theorem should not be seen as a
way to associate a power series to a continuous function. On the other hand, if
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the function is given by a power series, then the partial sums of the power series
do give an approximation in the sense of Weierstrass’ theorem.

Another point to note is that fn(k/n) can be different from f(k/n). Hence, the
polynomial fn(x) does not “interpolate” the given values of f . Even so, it can
be seen to be a good approximation for large enough n.

Functionals
A functional is a mathematical object that associates a number to a function.
In other words, it is a function on a space of functions. This may seem like a
complicated idea but we will see some simple examples.

One way to associate a number to a function is to evaluate the function at some
point. In other words, given c in the interval [a, b], we can define evc on the
space of continuous functions on [a, b] as

evc(f) = f(c) for f a continuous function on [a, b]

If (fn)n≥1 converges to f in norm, then ‖fn − f‖ can be made as small as one
likes by taking n sufficiently large. By the definition of ‖fn − f‖, it follows that
|fn(c)− f(x)| can be made as small as one lines by taking n sufficiently large. In
other words, we can see easily that (fn(c))n≥1 converges to f(c). In other words,
we have shown that if (fn)n≥1 converges to f then (evc(fn))n≥1 converges to
evc(f). This can be re-phrased as saying the evc is a continuous functional.

A different and equally important continuous functional is the one that associates
to f the integral I(f, [a, b]) as defined in the previous section. We will examine
this more closely in later sections.
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