Monotone Functions and Areas

(2 marks) 1. For each $a>0$ show that there is a unique positive solution $f(a)$ of the equation $x^{3}+x=a$. Moreover, show that the function f defined as $a \mapsto f(a)$ is a continuous function.
(3 marks) 2. For a positive continuous function f on the interval $[a, b]$, let $I(f,[a, b])$ denote the area of the region $A(f)$ as described in the notes. For any positive numbers p and q, let us define the function g on $[a / p, b / p]$ by $g(x)=q f(p x)$. What is $I(g,[a / p, b / p])$ in terms of $I(f,[a, b])$? Justify your answer. (Hint: First examine the case when the region is a trapezium.)
3. By the trapezoidal rule we get an approximation of $I\left(x^{2},[0,1]\right)$ as

$$
I_{n}=\sum_{k=0}^{n-1} \frac{k^{2}+(k+1)^{2}}{2 n^{2}} \frac{1}{n}
$$

by using the partition $0<1 / n<2 / n<\cdots<1$. In the following sequence of exercises we show that the sequence $\left(I_{n}\right)_{n \geq 1}$ converges to $1 / 3$.
(1 mark)
(1 mark)
(a) Show the identity

$$
\binom{n+1}{r+1}-\binom{n}{r+1}=\binom{n}{r}
$$

(b) Show the identity (use induction on n)

$$
\sum_{k=0}^{n}\binom{k}{r}=\binom{n+1}{r+1}
$$

(1 mark) (c) Show the identities

$$
\begin{aligned}
\sum_{k=0}^{n} k & =\binom{n+1}{2} \\
\sum_{n=0}^{n}\left(k^{2}-k\right) & =2\binom{n+1}{3}
\end{aligned}
$$

(2 marks) (d) Use the identities above to calculate the limit of I_{n}.

