
Areas
Using the Archimedean model of the number system allows us to assign numbers
to lengths. What about areas, volumes, angles and so on? How do we use the
least upper bound principle to assign numbers to such measurements?

Some high-school Geometry
We will use some basic ideas about areas as learnt in high-school geometry.

• The area |T | of a trapezium T with corners (a, 0), (a, p), (b, q), (b, 0) is
given by the formula |T | = (b− a)(p + q)/2. We note that this formula is
correct for all positive numbers p and q and for all numbers a and b so
that b > a.

• The area of the union of two regions which have at most a line segment in
common is the sum of the area of the two regions.

• The area of a region is the same as the area of any translate of the region.

We will use three three ingredients in our calculations below. The fact that there
is a notion of area for (some) planar regions that can consistently be made to
satisfy these “axioms” is something that needs to be separately justified; we will
not do so here!

One particular aspect of justification is as follows. Given a trapezium T with
corners (a, 0), (a, p), (b, q), (b, 0). Suppose we pick a number c between a
and b. The point vertically above it on the opposite edge in T is (c, r) where
r = (p(b− c) + q(c− a))/(b− a). We “break” T along this vertical segment into
T1 and T2, the left and right piece respectively. We calculate that the sum of
the areas of T1 and T2 is

(c− a)(p + r)
2 + (b− c)(r + q)

2

= (c− a)(p + q)
2 − (c− a)(q − r)

2 + (b− c)(p + q)
2 − (b− c)(r − p)

2

= (b− a)(p + q)
2 − (c− a) (q − p)(b− c)

2(b− a) − (b− c) (q − p)(c− a)
2(b− a)

= (b− a)(p + q)
2

In other words, the second condition above is consistent with the first condition
when we break a trapezium into two trapeziums: |T | = |T1|+ |T2|.

Area under a graph
Consider the region A(f) described as follows. A(f) is bounded by on three
sides by the line segment joining (a, 0), (b, 0), the line segment joining (a, 0),
(a, p) and the line segment joining (b, 0), (b, q). On the fourth side that we have
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the graph of a continuous non-negative function f on [a, b] such that f(a) = p
and f(b) = q. (Recall that the graph is the locus of points of the form (x, f(x))
for x in the interval [a, b].) Can we give a reasonable notion of area |A(f)| for
this region?

Area under a broken line

Recall that we say a continuous function f is piecewise linear on [a, b] if there is
a finite set of points a = x0 < x1 < · · · < xn = b so that f(x) = (1− t)f(xi−1) +
tf(xi) when x = (1−t)xi−1 +txi is a point in the interval [xi−1, xi] (for 0 ≤ t ≤ 1
and i some integer between 1 and n). We first want to compute the area under
the graph of such a piecewise linear function, assuming in addition that f is
non-negative. This graph can be seen as a “broken line”.

In this case, we see that the region A(f) for such a function f is the union of the
trapeziums Ti, for i = 1, . . . , n, where Ti is the trapezium described by (xi−1, 0),
(xi−1, f(xi−1)), (xi, f(xi)) and (xi, 0). The trapeziums Ti and Ti+1 meet along
a common edge and there are no other overlaps. By applying the above axioms
for area, we see that the area |A(f)| is the sum of the areas |Ti|. In other words,
it is

(x1−x0)·f(x0) + f(x1)
2 +(x2−x1)·f(x1) + f(x2)

2 +· · ·+(xn−xn−1)·f(xn) + f(xn−1)
2

In particular, the area |A(f)| can be easily calculated in terms of the values of
the function at the points xi for i = 0, . . . , n.

Note that if someone adds some (a finite number of) points to the list (a =
x0 < x1 < · · · < xn = b), then the area computed above does not change! The
reason is that adding a point x′ between xi−1 and xi is the same as breaking
the trapezium Ti along the vertical line through x′.

Comparison of two areas

Suppose that f and g are two piecewise linear functions on [a, b]. Suppose that
a = x0 < x1 < · · · < xn = b) is a sequence of points chosen so that both the
functions are linear on each interval [xi−1, xi]. In other words, for every t lying
between 0 and 1 we have

f((1− t)xi−1 + txi) = (1− t)f(xi−1) + tf(xi)
g((1− t)xi−1 + txi) = (1− t)g(xi−1) + tg(xi)

As above the areas of the regions A(f) and A(g) can be calculated in terms of
the areas of trapeziums.

Suppose that for some constant c we have the inequality |f(x)− g(x)| < c for
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all x in the interval [a, b]. We calculate,

|A(f)| − |A(g)| =
x1 − x0

2 · ((f(x0) + f(x1))− (g(x0) + g(x1))) +
x2 − x1

2 · ((f(x1) + f(x2))− (g(x1) + g(x2))) +

· · ·+
xn − xn−1

2 · ((f(xn−1) + f(xn))− (g(xn−1) + g(xn)))

Since each of the differences |f(xi)− g(xi)| is at most c, we obtain

||A(f)| − |A(g)|| ≤
x1 − x0

2 · (|f(x0)− g(x0)|+ |f(x1)− g(x1)|) +

· · ·+
xn − xn−1

2 · (|f(xn−1)− g(xn−1)|+ |f(xn)− g(xn)|)

≤ (b− a)c

Thus, a uniform bound on the difference between the functions gives a uniform
bound on the difference between the areas under them.

Area under a general function

Since f is (uniformly) continuous on [a, b] we know that given a positive integer
k, there is a positive integer nk so that |f(x)−f(y)| ≤ 1/k if |x−y| ≤ (b−a)/nk.
So, we can define a function piecewise linear function fk (as done in an earlier
section) as follows. Let r be the integer part of (b− a)nk and use the notation
ap = a + p/nk for p = 0, . . . , r and ar+1 = b. We define

fk((1− t)ap + tap+1) = (1− t)f(ap) + tf(ap+1) for 0 ≤ t ≤ 1

Given any x lying in the interval [ap, ap+1] we put t = (x− ap)/(ap+1 − ap) and
note that x = (1− t) · ap + t · ap+1. So we have defined fk for all values of x in
the interval [a, b]. Moreover, we have (for this x and t)

|f(x)− fk(x)| = |f(x)− (1− t)f(ap) + tf(ap+1)|
≤ (1− t)|f(x)− f(ap)|+ t|f(x)− f(ap+1)| < 1/k

In other words, as seen earlier, the function fk uniformly approximates f in the
interval [a, b] with an error of at most 1/k.

Suppose that g is another piecewise linear continuous function such that |g(x)−
f(x)| < c is a uniform bound on the difference for x in the interval [a, b].
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As we have seen the areas |A(fk)| and |A(g)| are well-defined since these regions
are unions of Trapeziums. Moreover, we have |g(x)− fk(x)| < c + 1/k. As seen
above, this means that the difference between these areas is

||A(fk)| − |A(g)|| ≤ (b− a)(c + 1/k)

In particular, if we consider the sequence of functions (fk)k≥1, then we have

||A(fk)| − |A(fl)|| ≤ (b− a)(1/l + 1/k)

It follows easily, that (|A(fk)|)k≥1 is a sequence of numbers satisfying Cauchy’s
criterion for convergence. Hence, it converges to a number which want to call
the area |A(f)| of the region A(f).

To get some more intuition, we can estimate the error in using the area of the
region A(fk) as an approximation to the area A(f). The graph of f over [ap, ap+1]
lies inside the parallelogram with corners (ap, f(ap) − 1/k), (ap, f(ap) + 1/k),
(ap+1, f(ap+1) + 1/k), (ap+1, f(ap+1) − 1/k). The graph of fk over [ap, ap+1]
also lies in this parallelogram. Hence, the error is at most the area of this
parallelogram! By using the calculations above, we see that this is (2/k)(ap+1 −
ap). Adding up all the errors, we see that the error is at most (2/k)(b− a).

Trapezoidal rule

As a result of the above discussion, we see that the area of the region A(f) is
well-defined.

Moreover, to approximate the area of the region A(f) with an error of at most
1/p, we choose a k so that (2/k)(b − a) < 1/p. We then find a “partition”
(a = x0 < x1 < · · · < xn = b) so that for any x, y in the interval [xi−1, xi] we
have |f(x)− f(y)| < 1/k. The approximate value of A(f) up to an error of at
most 1/p is given by

(x1 − x0) · f(x0) + f(x1)
2 + (x2 − x1) · f(x1) + f(x2)

2 +

· · ·+ (xn − xn−1) · f(xn) + f(xn−1)
2

This method of calculating the approximate area of the region A(f) known as
the Trapezoidal rule.
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